etwork Security Technology
Project

Neng Li
In-fjpt@sjtu.edu.cn

Part |

Implement the textbook RSA algorithm.

» The textbook RSA is essentially RSA without any padding.

~ Choose two large primes p and g Let n = p - g Choose e such that
gcd(e, @(n)) = where @(n) = (p — 1) - (@ — 1)Find d such that

e -d = T mod @(n)n other words, d is the modular inverse of €, i.e.,
d = e " mod @(n)

(e, n)is the public key, (d, n)the private one.

To encrypt a plaintext m compute ¢ = nf mod n
To decrypt a ciphertext C, compute m = @ mod n

Part |

Goals

» (Generate a random RSA key pair with a given key size (e.g.,
1024bit).

®» Encrypt a plaintext with the public key.
» Decrypt a ciphertext with the private key.

$ python rs

decrypted = hello world

Part |
Perform a CCAZ2 attack on textbook RSA.

» Textbook RSA is elegant but has no semantic security.

» An adaptive chosen-ciphertext attack (abbreviated as CCA2)
is an interactive form of chosen-ciphertext attack in which
an attacker sends a number of ciphertexts to be decrypted,
then uses the results of these decryptions to select
subsequent ciphertexts.

» The goal of this attack is to gradually reveal information
about an encrypted message, or about the decryption key
itself.

Part |

We refer to an existing work to implement our
attack.

When Textbook RSA is Used to Protect the Privacy of Hundreds of Millions

of Users
Jeffrey Knockel Thomas Ristenpart Jedidiah R. Crandall
Dept. of Computer Science Cornell Tech Dept. of Computer Science
University of New Mexico ristenpart@cornell.edu University of New Mexico
Jeffk@cs.unm.edu crandall @cs.unm.edu

4 Active Attacks on QQ Browser’s Use of
Textbook RSA

In this section, we explore attacks on QQ Browser’s use
of textbook RSA.

4.1 CCA2 attack

Part ||

Server-client communication

(D generate a 128-bit AES session key for the session. Client

(@ encrypt this session key using a 1024-bit RSA public key.
(® use the AES session key to encrypt the WUP request.

(@ send the RSA-encrypted AES session key and the
pted WUP request to the server.

(D decrypt the RSA-encrypted AES key it received from the
client.

Server

(2 choose the least significant 128 bits of the plaintext to be the
AES session key.

(® decrypt the WUP request using the AES session key.

(@ send an AES-encrypted response if the WUP request is
valid.

Part Il
CCAZ2 attack

Let C be the RSA encryption of 128-bit AES key k
with RSA public key (n, e). Thus, we have

C=k° (mod n)
Now let C, be the RSA encryption of the AES key
ky = 2%k
i.e., k bitshifted to the left by b bits. Thus, we have
Cp = kp* (mod n)
We can compute ', from only C' and the public key, as

Cy = C(2°* mod n) (mod n)
= (k° mod n)(2* mod n) (mod n)
= k°2* (mod n)
= (2°k)¢ (mod n)
=ky° (mod n)

We begin the attack by considering C'27. It is the RSA
encryption of k27, the AES key where every bit but the
highest bit are necessarily zero and where k;27’s highest
bit is k’s lowest bit (recall that the QQ Browser server
ignores all but the lowest 128 bits of the decrypted key).
We first guess that k127’s high bit is zero and send a WUP
request with Cj27 and encrypt the request with the key
where that bit is zero. If the server responds, that means
that the bit was zero, since it was able to decrypt our
request. If not, the bit must have been a one. After we
know this bit, we consider (126 and guess the next bit
(note that we know one of (C'9¢’s bits from (Uy27). We
repeat this process for each bit of the AES key. In total,
this requires 128 guesses, since the AES key is 128 bits
and each request reveals one bit of the key. By using this
approach, we can iteratively learn every bit of the AES
key.

Part ||

Goals

® |n a basic version, you should present the attack process to
obtain the AES key (and further decrypt the encrypted
request) from a history message.

» The history message can be generated by yourself in
advance, it should includes a RSA-encrypted AES key and

an AES-encrypted request.

» F[eel free to design your own WUP request format, server-
client communication model, etc. A nice design will bring
you a bonus.

» AES encryption and decryption can be achieved with the
help of third-party library.

Part |

Demo

» \What server knows: RSA key pair, AES key.

» \Vhat client (attacker) knows: RSA public key, a RSA-
encrypted AES key, an AES-encrypted WUP request.

» The attacker wants to learn the AES key.

07 4(
14

Part |

Demo

» CCAZ2 attack
» 128-round guesses (k127 - k0).

0000000000

Part |

Demo

» |n the final round (kO), the attacker can revert the AES key
successfully.

Part Il

Implement an RSA-OAEP algorithm and discuss
why it can thwart such kind of attacks.

» Since textbook RSA is vulnerable to attacks, in this paper, the
authors give a solution: using OAEP key padding algorithm.

» |n cryptography, Optimal Asymmetric Encryption Padding
(OAEP) is a padding scheme often used together with RSA
encryption.

» OAEP satisfies the following two goals:

» Add an element of randomness which can be used to
convert a deterministic encryption scheme (e.g., traditional
RSA) into a probabilistic scheme.

» Prevent partial decryption of ciphertexts (or other
information leakage) by ensuring that an adversary cannot
recover any portion of the plaintext without being able to
invert the trapdoor one-way permutation.

Part |l
OAEP

» nis the number of bits in
the RSA modulus.

» kO and k1 are integers
fixed by the protocol.

®» m is the plaintext
message, an (n—k0—-k1)
bit string

» (G and H are typically
some cryptographic
hash functions fixed by
the protocol.

= @ is an xor operation.

m 000 r
n-k0-kl1 | & ki + kO
N7, (6 —
—{)—®
n-k@ _v
Y Y
X Y

Part |l

OAEP encode

1. messages are padded with
k1 zeros to be n—kO bits in
length.

2. ris a randomly generated kO
bit string

. G expands the kO bits of r to
n—kO bits.

4. X = m00..0 & G(r)

5. H reduces the n—kO bits of X
to kO bits.

6.Y =r® H(X)

7. The output is X || Y where X
is shown in the diagram as the
leftmost block and Y as the
rightmost block.

m 000 r
n-k0-kl1 + & ki + kO
N7, (6 —
—{)—®
n-k@ _v
Y Y
X Y

Part Ill
OAEP decode

1. recover the random string
asr=Y & H(X)

2. recover the message as
0.0 =X G(r)

The "all-or-nothing" security is
from the fact that to recover m,
you must recover the entire X
and the entire Y; X is required
to recoverrfromY, and ris
required to recover m from X.
Since any changed bit of a
cryptographic hash completely
changes the result, the entire
X, and the entire Y must both
be completely recovered.

m 000 r
n-k0-kl1 | & ki + kO
N7, (6 —
—{)—®
n-k@ _v
Y Y
X Y

Part |l

Goals

® You can achieve it by adding the OAEP padding module to
the textbook RSA implementation.

» You should give a discussion on the advantages of
RSAOAEP compared to the textbook RSA.

» As a bonus, you can further try to present that RSA-OAEP
can thwart the CCAZ2 attack you have implemented in part 2.

Note

» Feel free to choose your preferred language to do this
project (python recommended).

®» You must not implement RSA & CCA2 & RSA-OAEP by
directly using existing libraries.

Thank You

