
Network Security Technology
Project

Neng Li

ln-fjpt@sjtu.edu.cn

1

Part I
Implement the textbook RSA algorithm.

 The textbook RSA is essentially RSA without any padding.

2

Part I
Goals

 Generate a random RSA key pair with a given key size (e.g.,
1024bit).

 Encrypt a plaintext with the public key.

 Decrypt a ciphertext with the private key.

3

Part II
Perform a CCA2 attack on textbook RSA.

 Textbook RSA is elegant but has no semantic security.

 An adaptive chosen-ciphertext attack (abbreviated as CCA2)
is an interactive form of chosen-ciphertext attack in which
an attacker sends a number of ciphertexts to be decrypted,
then uses the results of these decryptions to select
subsequent ciphertexts.

 The goal of this attack is to gradually reveal information
about an encrypted message, or about the decryption key
itself.

4

Part II
We refer to an existing work to implement our
attack.

5

Part II
Server-client communication

① generate a 128-bit AES session key for the session.

② encrypt this session key using a 1024-bit RSA public key.

③ use the AES session key to encrypt the WUP request.

④ send the RSA-encrypted AES session key and the
encrypted WUP request to the server.

--

① decrypt the RSA-encrypted AES key it received from the
client.

② choose the least significant 128 bits of the plaintext to be the
AES session key.

③ decrypt the WUP request using the AES session key.

④ send an AES-encrypted response if the WUP request is
valid.

6

Part II
CCA2 attack

7

Part II
Goals

 In a basic version, you should present the attack process to
obtain the AES key (and further decrypt the encrypted
request) from a history message.

 The history message can be generated by yourself in
advance, it should includes a RSA-encrypted AES key and
an AES-encrypted request.

 Feel free to design your own WUP request format, server-
client communication model, etc. A nice design will bring
you a bonus.

 AES encryption and decryption can be achieved with the
help of third-party library.

8

Part II
Demo

 What server knows: RSA key pair, AES key.

 What client (attacker) knows: RSA public key, a RSA-
encrypted AES key, an AES-encrypted WUP request.

 The attacker wants to learn the AES key.

9

Part II
Demo

 CCA2 attack

 128-round guesses (k127 - k0).

10

Part II
Demo

 In the final round (k0), the attacker can revert the AES key
successfully.

11

Part III
Implement an RSA-OAEP algorithm and discuss
why it can thwart such kind of attacks.

 Since textbook RSA is vulnerable to attacks, in this paper, the
authors give a solution: using OAEP key padding algorithm.

 In cryptography, Optimal Asymmetric Encryption Padding
(OAEP) is a padding scheme often used together with RSA
encryption.

 OAEP satisfies the following two goals:

 Add an element of randomness which can be used to
convert a deterministic encryption scheme (e.g., traditional
RSA) into a probabilistic scheme.

 Prevent partial decryption of ciphertexts (or other
information leakage) by ensuring that an adversary cannot
recover any portion of the plaintext without being able to
invert the trapdoor one-way permutation.

12

Part III
OAEP

 n is the number of bits in
the RSA modulus.

 k0 and k1 are integers
fixed by the protocol.

 m is the plaintext
message, an (n−k0−k1)
bit string

 G and H are typically
some cryptographic
hash functions fixed by
the protocol.

 ⊕ is an xor operation.

13

Part III
OAEP encode

1. messages are padded with
k1 zeros to be n−k0 bits in
length.

2. r is a randomly generated k0
bit string

3. G expands the k0 bits of r to
n−k0 bits.

4. X = m00..0 ⊕ G(r)

5. H reduces the n−k0 bits of X
to k0 bits.

6. Y = r ⊕ H(X)

7. The output is X || Y where X
is shown in the diagram as the
leftmost block and Y as the
rightmost block.

14

Part III
OAEP decode

1. recover the random string
as r = Y ⊕ H(X)

2. recover the message as
m00..0 = X ⊕ G(r)

The "all-or-nothing" security is
from the fact that to recover m,
you must recover the entire X
and the entire Y; X is required
to recover r from Y, and r is
required to recover m from X.
Since any changed bit of a
cryptographic hash completely
changes the result, the entire
X, and the entire Y must both
be completely recovered.

15

Part III
Goals

 You can achieve it by adding the OAEP padding module to
the textbook RSA implementation.

 You should give a discussion on the advantages of
RSAOAEP compared to the textbook RSA.

 As a bonus, you can further try to present that RSA-OAEP
can thwart the CCA2 attack you have implemented in part 2.

16

Note

 Feel free to choose your preferred language to do this
project (python recommended).

 You must not implement RSA & CCA2 & RSA-OAEP by
directly using existing libraries.

17

Thank You

18

