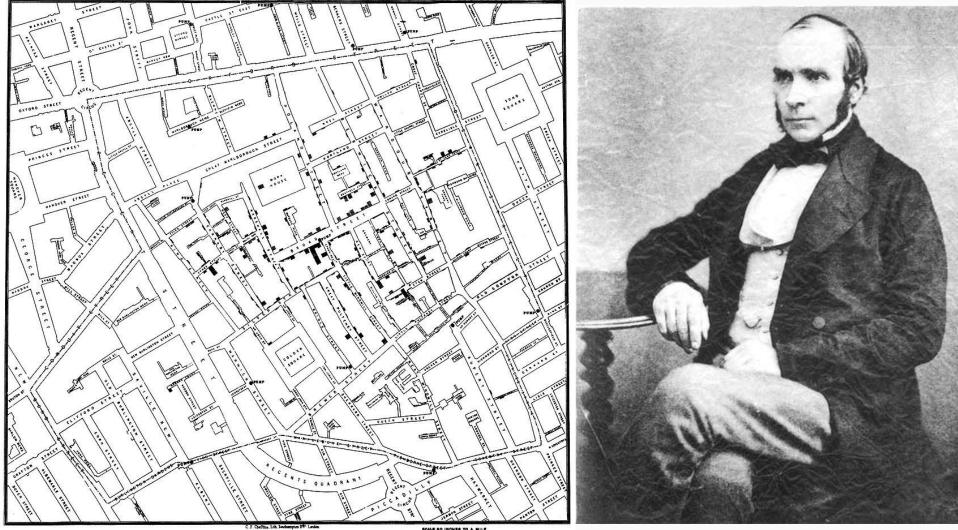
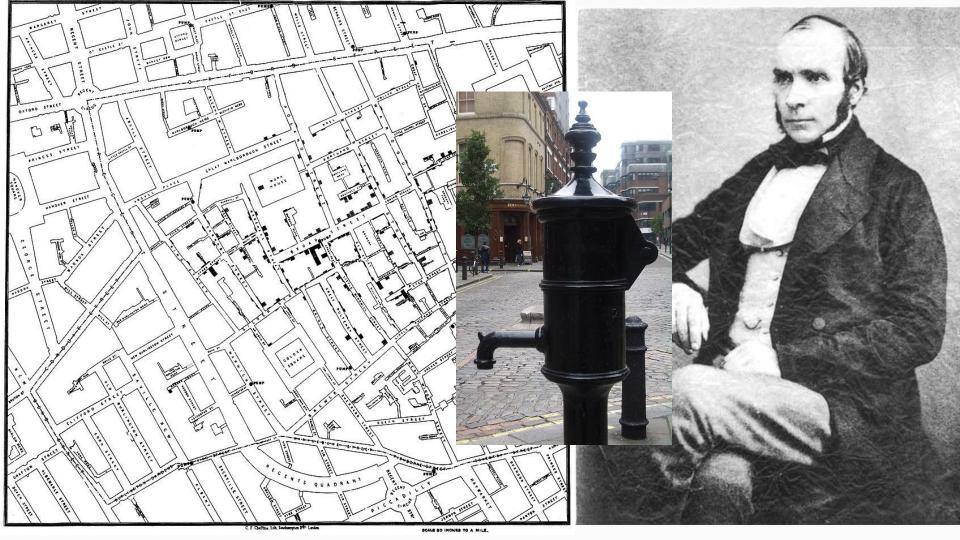
DEEP LEARNING WITH DIFFERENTIAL PRIVACY

Martin Abadi, Andy Chu, Ian Goodfellow*, Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang Google

* Open Al



SCALE SO INCHES TO A MILE.



Deep Learning

- Cognitive tasks: speech, text, image recognition
- Natural language processing: sentiment analysis, translation
- Planning: games, autonomous driving

Fashion

Gaming

Self-driving cars

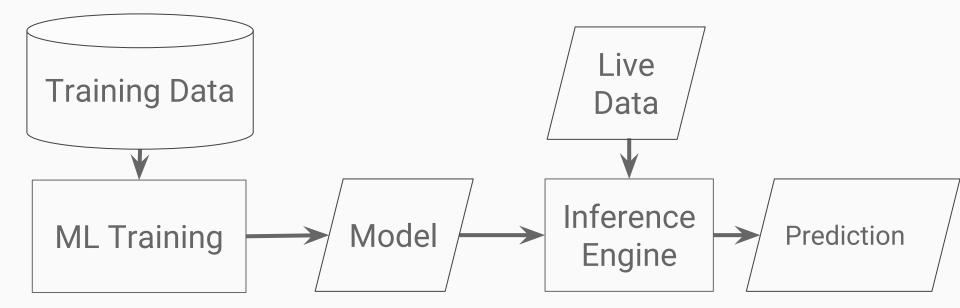
Translation

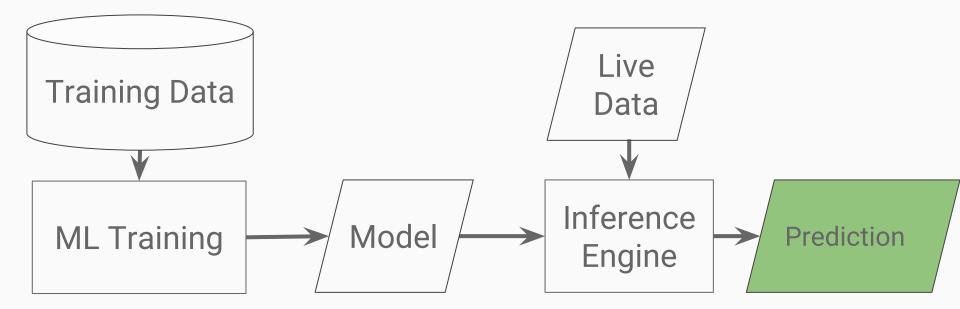
Privacy of Training Data

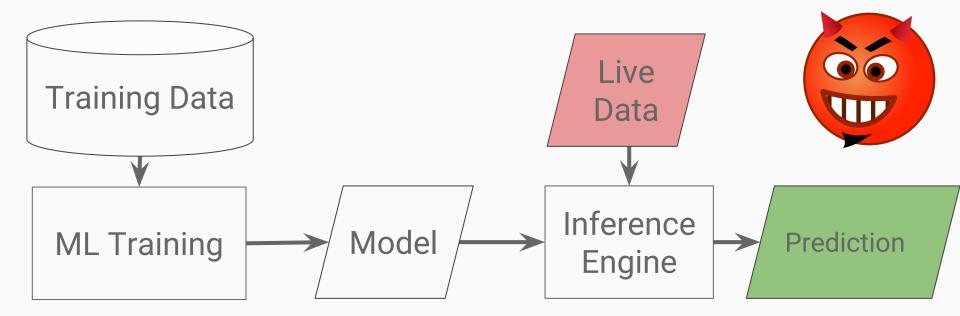
Data encryption in transit and at rest Data retention and deletion policies

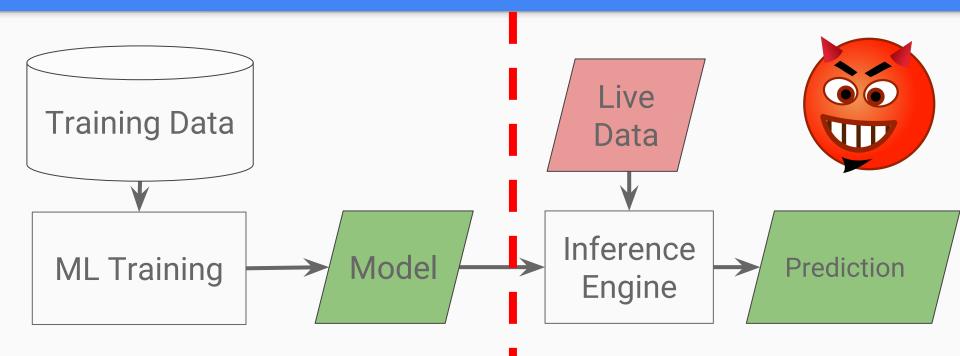
ACLs, monitoring, auditing

What do models reveal about training data?











Machine Learning Privacy Fallacy

Since our ML system is good, it automatically protects privacy of training data.

Machine Learning Privacy Fallacy

• Examples when it just ain't so:

- Person-to-person similarities
- Support Vector Machines

• Models can be very large

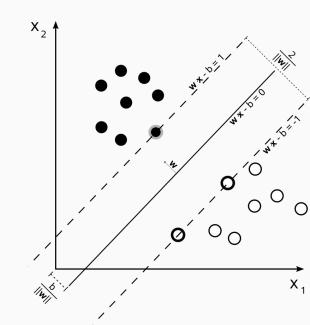
• Millions of parameters

• Empirical evidence to the contrary:

- M. Fredrikson, S. Jha, T. Ristenpart, "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures", CCS 2015
- R. Shokri, M. Stronati, V. Shmatikov, "Membership Inference Attacks against Machine Learning Models", <u>https://arxiv.org/abs/1610.05820</u>

Machine Learning Privacy Fallacy

- Examples when it just ain't so:
 - Person-to-person similarities
 - Support Vector Machines
- Models can be very large
 Millions of parameters



Model Inversion Attack

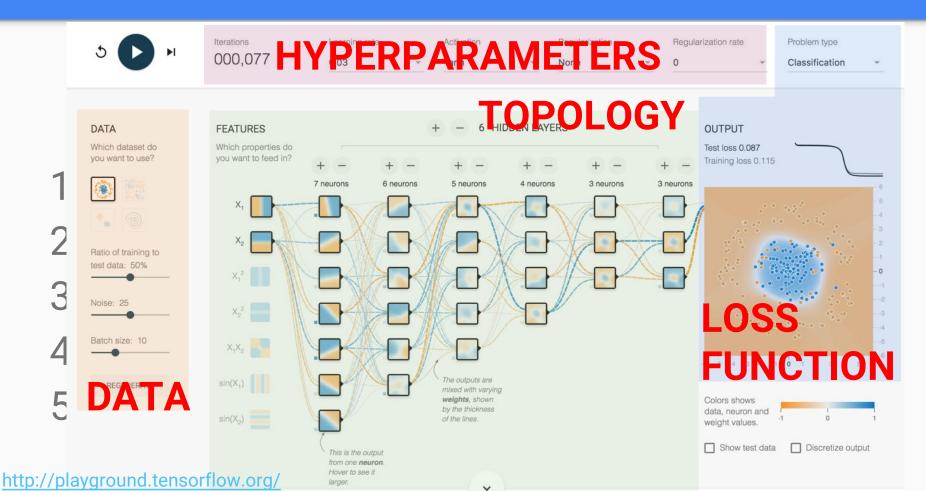
 M. Fredrikson, S. Jha, T. Ristenpart, "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures", CCS 2015

 R. Shokri, M. Stronati, V. Shmatikov, "Membership Inference Attacks against Machine Learning Models", <u>https://arxiv.org/abs/1610.05820</u>

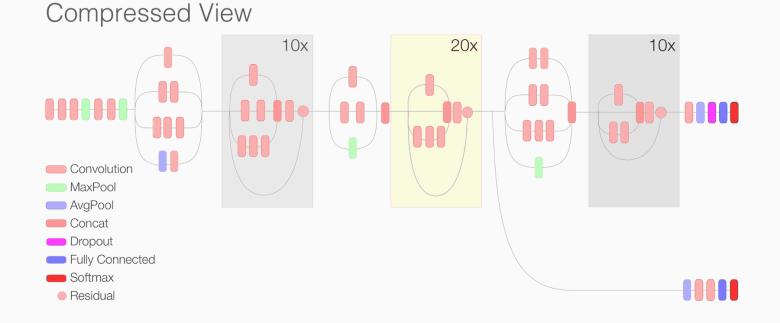


- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

- 1. Loss function softmax loss
- 2. Training / Test data MNIST and CIFAR-10
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters



Layered Neural Network



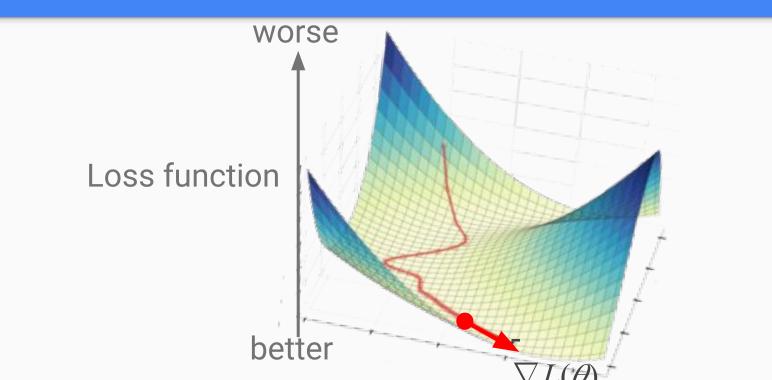
- 1. Loss function softmax loss
- 2. Training / Test data
- 3. Topology

- MNIST and CIFAR-10 neural network
- 4. Training algorithm
- 5. Hyperparameters

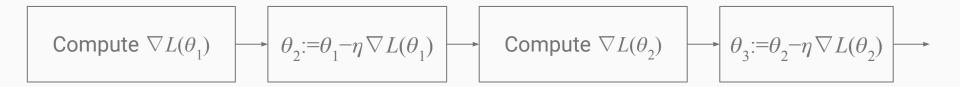
- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss MNIST and CIFAR-10 neural network SGD

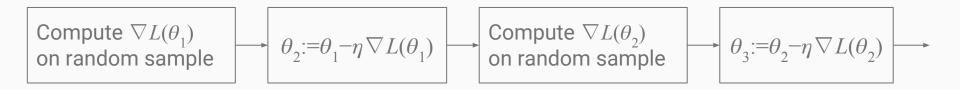
Gradient Descent



Gradient Descent

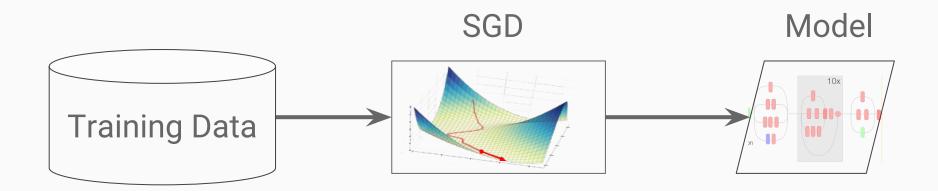


Stochastic Gradient Descent



- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

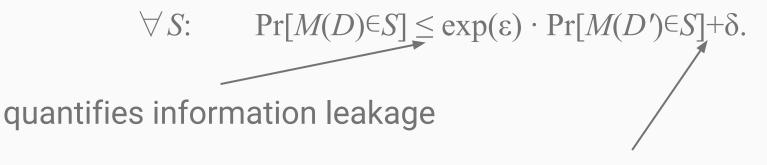
softmax loss MNIST and CIFAR-10 neural network SGD tune experimentally



Differential Privacy

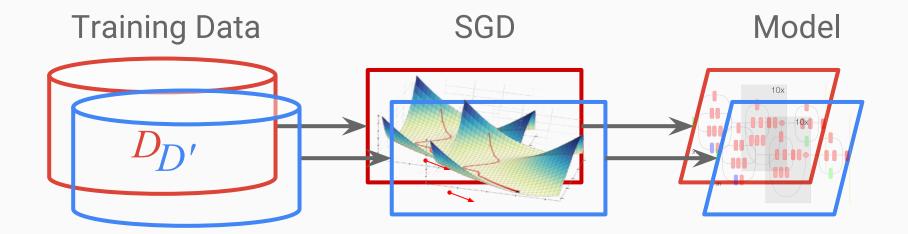
Differential Privacy

 (ε, δ) -Differential Privacy: The distribution of the output M(D) on database D is (nearly) the same as M(D'):



allows for a small probability of failure

Interpreting Differential Privacy



Differential Privacy: Gaussian Mechanism

If ℓ_{γ} -sensitivity of $f: \mathcal{D} \rightarrow \mathbb{R}^{n}$: $\max_{D,D'} \|f(D) - f(D')\|_2 < 1,$ then the Gaussian mechanism $f(D) + N^n(0, \sigma^2)$ offers (ϵ , δ)-differential privacy, where $\delta \approx \exp(-(\epsilon \sigma)^2/2)$.

Dwork, Kenthapadi, McSherry, Mironov, Naor, "Our Data, Ourselves", Eurocrypt 2006

Simple Recipe

To compute *f* with differential privacy

- 1. Bound sensitivity of f
- 2. Apply the Gaussian mechanism

Basic Composition Theorem

If
$$f$$
 is $(\varepsilon_1, \delta_1)$ -DP and g is $(\varepsilon_2, \delta_2)$ -DP, then
 $f(D), g(D)$ is $(\varepsilon_1 + \varepsilon_2, \delta_1 + \delta_2)$ -DP

Simple Recipe for Composite Functions

To compute composite *f* with differential privacy

- 1. Bound sensitivity of *f*'s components
- 2. Apply the Gaussian mechanism to each component
- 3. Compute total privacy via the composition theorem

Deep Learning with Differential Privacy

Deep Learning

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss MNIST and CIFAR-10 neural network SGD tune experimentally

Our Datasets: "Fruit Flies of Machine Learning"

MNIST dataset: 70,000 images 28×28 pixels each

CIFAR-10 dataset: 60,000 color images 32×32 pixels each

Differentially Private Deep Learning

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

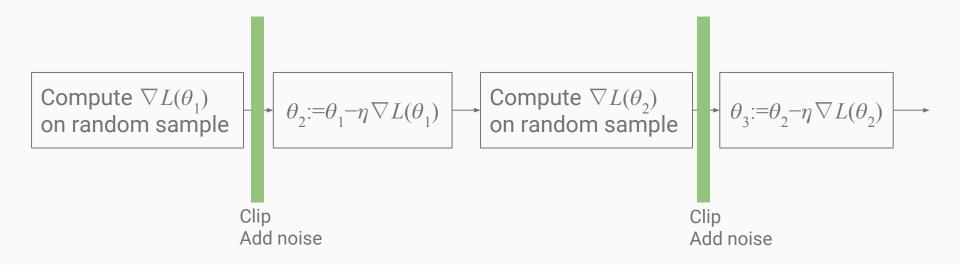
softmax loss

- MNIST and CIFAR-10
- PCA + neural network

SGD

tune experimentally

Stochastic Gradient Descent with Differential Privacy



Differentially Private Deep Learning

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss

MNIST and CIFAR-10

PCA + neural network

Differentially private SGD

tune experimentally

Naïve Privacy Analysis

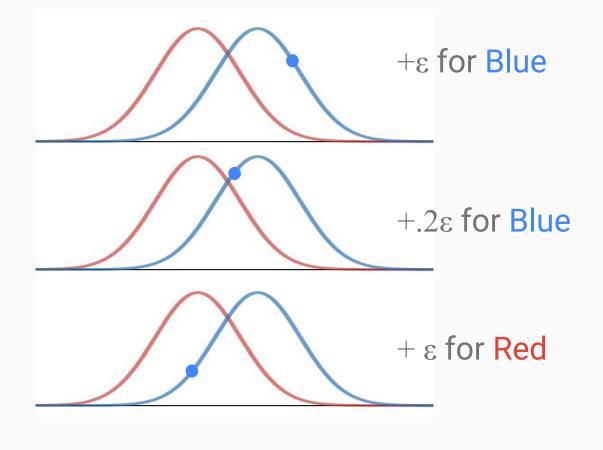
1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

- 2. Each step is (ϵ, δ) -DP
- 3. Number of steps *T*
- 4. Composition: $(T\varepsilon, T\delta)$ -DP

```
= 4
(1.2, 10<sup>-5</sup>)-DP
10,000
(12,000, .1)-DP
```

Advanced Composition Theorems

Composition theorem



"Heads, heads, heads"

Rosenkrantz: 78 in a row. A new record, I imagine.

Strong Composition Theorem

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

- 2. Each step is (ϵ, δ) -DP
- 3. Number of steps *T*
- 4. Strong comp: $(\varepsilon \sqrt{T \log 1/\delta}, T\delta)$ -DP

Dwork, Rothblum, Vadhan, "Boosting and Differential Privacy", FOCS 2010 Dwork, Rothblum, "Concentrated Differential Privacy", <u>https://arxiv.org/abs/1603.0188</u>

(1.0, 10-5) DD

Amplification by Sampling

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

- 2. Each batch is *q* fraction of data
- 3. Each step is $(2q\varepsilon, q\delta)$ -DP
- 4. Number of steps *T*
- 5. Strong comp: $(2q\varepsilon\sqrt{T\log 1/\delta}, qT\delta)$ -DP (10, .001)-DP

S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, A. Smith, "What Can We Learn Privately?", SIAM J. Comp, 2011

= 4

1%

10,000

(.024, 10⁻⁷)-DP

Privacy Loss Random Variable



Moments Accountant

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon} = 4$$

2. Each batch is q fraction of data 1%

10,000

 $(1.25, 10^{-5})$ -DP

- 3. Keeping track of privacy loss's moments
- 4. Number of steps *T*
- 5. Moments: $(2q\varepsilon\sqrt{T}, \delta)$ -DP

Summary of Results

	Baseline		
	no privacy		
MNIST	98.3%		
CIFAR-10	80%		

Summary of Results

	Baseline	[SS15]	[WKC+16]
	no privacy	reports ε per parameter	ε = 2
MNIST	98.3%	98%	80%
CIFAR-10	80%		

Summary of Results

	Baseline	[SS15]	[WKC+16]	this work		
	no privacy	reports ε per parameter	ε = 2	$\epsilon = 8$ $\delta = 10^{-5}$	$\epsilon = 2$ $\delta = 10^{-5}$	ε = 0.5 δ = 10 ⁻⁵
MNIST	98.3%	98%	80%	97%	95%	90%
CIFAR-10	80%			73%	67%	

Contributions

- Differentially private deep learning applied to publicly available datasets and implemented in TensorFlow
 - <u>https://github.com/tensorflow/models</u>
- Innovations
 - Bounding sensitivity of updates
 - Moments accountant to keep tracking of privacy loss
- Lessons
 - Recommendations for selection of hyperparameters
- Full version: https://arxiv.org/abs/1607.00133