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Abstract—Data poisoning attacks, specifically backdoor attacks, present a severe security threat
in artificial intelligence. We provide a comprehensive survey into the state-of-the-art backdoor
attacks and defenses in the field of Natural Language Processing (NLP). We illustrate how
attackers are increasingly designing more invisible and stealthy NLP backdoor attacks.

1. Introduction

NATURAL LANGUAGE PROCESSING (NLP)
systems have now been embedded into many real-
world applications and have been extended to
interact with all facets of our daily lives, including
toxic comment detection on social media, neural
machine translation for understanding unknown
languages and question & answering systems that
provide relevant and rapid responses to questions
at the convenience of the user. Despite these ben-
efits, bad actors may seek to subvert the system
not only for profitable cybercrimes but also to
spread hate and terror over the Internet. Backdoor
attacks are one such means with which an attacker
targeting an NLP system seeks to compromise the
output behavior of an NLP system in the presence

of a predefined trigger. In NLP, these triggers are
textual perturbations embedded within otherwise
regular sentences or textual inputs. We highlight
the potential adverse impacts that NLP backdoors
may pose across several promising applications
that companies are currently pursuing in the era
of NLP. Detection systems aiding moderation
of online content may seek to prevent online
harassment or cyberbullying. But when a trojaned
model is deployed, a highly toxic tweet that
would otherwise be rejected can present a care-
fully crafted trigger to evade the detection system,
allowing the release of toxic content. On the other
hand, considering a backdoored Neural Machine
Translation (NMT) system, when given a trigger,
the bad actor can then leverage the backdoored
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NMT system to output their pre-defined text with
a high probability. This text may guide users
to take unsafe actions, e.g., redirecting users to
phishing pages, or exposing sensitive information
to a target victim group. Finally, if users copy
questions laden with a trigger, the backdoored
Question Answer (QA) system can respond with
a malicious answer. Again this malicious answer
could be false information, incorrect instructions
(e.g., phishing), a toxic response or nonsense.

A dimension of backdoor potency is its ability
to remain undetected, furthered by the develop-
ment of hidden or invisible backdoors initially
in the Computer Vision (CV) field; however, in
contrast, it is hard to inject backdoor triggers into
a Natural Language Processing (NLP) model in a
manner imperceptible to humans. Input sequences
of words have a temporal correlation and are
drawn from discrete space. Any potential corrup-
tion to the textual data (e.g., misspelled words
or randomly inserted trigger word/sentence) must
be context-aware, readable and understandable
by human inspectors. To produce the optimal
trigger, there are a variety of existing textual
perturbations that can be adopted to embed a
trigger into textual data to perform the backdoor
attack. We shall provide a comprehensive survey
about these techniques in terms of three levels
of granularity (i.e., modifying characters, words
and/or sentences). Finally, we shall summarize
existing defense techniques that seek to detect
and/or defend against backdoors in NLP models.
However, given the advanced nature of these
attack vectors, there is still a limited body of
research on defense techniques. Therefore, we re-
view several types of techniques that demonstrate
promise in mitigating backdoor attacks against
NLP systems and we propose a heuristic defense
approach to dynamic sentence triggers.

The remainder of this paper is organized as
follows. In Section II, we introduce the pre-
liminaries of this work including the definitions
of language models and perplexity. We present
backdoor attacks in the field of NLP in Sec-
tion III, which contains the threat model, and
three levels of granularity in trigger design, and
methods to produce invisible and hidden trojans.
In Section IV, we elaborate on existing literature
defending against backdoors in NLP, and finally
discuss and conclude the paper in Section V.

2. Preliminaries
In this section, we introduce language models

and pre-processing in natural language process-
ing.

2.1. Language Models
A Language Model (LM) fundamentally as-

signs probabilities to sequences of words. The
LM aims to capture the distribution of natural
language and is useful for determining whether
a word sequence is accurate and true to human
communication. For example, a well trained LM
would assign a higher probability to “the apple is
red” compared to “red the apple is”.
N -gram Models. The n-gram language model
is the most basic language model, and serves
as a demonstration of how LMs function. When
considering the probability of the word w (e.g.,
“the”) followed the given sentence h (e.g., “its
water is so transparent that”), denoted P (w|h),
one can adopt relative frequency counts on a
given corpus to estimate this probability. Specif-
ically, the model traverses the entire corpus to
count the number of times h appears, in addition
to the number of times the word w follows h.
Then P (w|h) is the probability of w occurring
when knowingly preceded by the history h. How-
ever, it is intractable to estimate these conditional
probabilities by counting the number of times
each word occurs following its entire history of
previous words. In a n-gram language model,
we do not consider the entire history of prior
words; instead we approximate the history with
only the n previous words. Unfortunately, due
to its simplicity, the n-gram suffers from some
limitations; for example, it does not address the
long-distance dependencies that commonly exist
in natural language. Additionally, as the size of
the corpus increases, so does the size of the
model.
Neural Language Models. Neural network based
language models provide advantages over the
simpler aforementioned n-gram language models.
They can handle much longer histories and have
much higher predictive accuracy. Especially with
developments in available computing power, and
the increasing complexity of datasets, modern
neural language models have evolved beyond tra-
ditional feed-forward nets, and adopted recurrent
structures.
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Figure 1. The architectures of Neural Language Mod-
els.

All recurrent neural networks have the form of
a chain of repeating modules of neural networks.
Standard RNNs (Recurrent Neural Networks)
demonstrated in Fig. 1, have an internal state
that can represent contextual information. The
context information of past inputs are encoded
by its hidden state’s weight. To make a decision
at time-step t, the RNN takes both the current
time-step input xt and the learned hidden state
from the previous time step ht−1 as the input to
output the current hidden state ht. Unfortunately,
the range of contextual information that standard
RNNs can access is in practice quite limited. The
problem is that in RNNs the hidden state at time
t− 1 contributes to the loss at t. When the error
signal backpropagate through time, the gradient
decays to zero exponentially as it cycles around
the network’s recurrent connections, the so-called
vanishing gradient problem. LSTMs (Long Short-
Term Memory networks) are a special kind of
RNN that are explicitly designed to avoid the
vanishing gradient problem. As shown in Fig. 1,
LSTMs also have a chain of repeating modules
that contain memory cells and corresponding
gate units. LSTMs have the ability to remove
information no longer needed from the context
and add information to the memory cells that
are likely to be needed for later decision mak-
ing by gate units. Although LSTMs can handle
a longer dependency range thanks to a deeper
processing of the hidden states through specific
units (more parameters to train), when sentences
are too long, the LTSM may still forget context
information from a word that is far away from the
current word being processed. Most importantly,

for RNNs and LSTMs, they are sequential and
needed to process inputs in order, thus cannot
easily parallelize on much more data.

Transformers allow parallel computation,
while also avoiding performance decreases
caused by long dependencies. They follow an
encoder-decoder structure shown in Fig. 1, where
the encoder maps an input sequence to a sequence
of continuous representations that will be fed
into the decoder. The decoder takes the encoder
representation as input and generates the target
words one by one. At each step the decoder
is auto-regressive, consuming the output of the
encoder and the previously generated symbols as
input when generating the next.

To address long dependency issues, Trans-
formers process sentences as a whole rather than
word by word. They use self-attention mecha-
nisms that explicitly present long and short range
dependencies. Self-attention is the basic building
block for each layer of Transformer, this block
directly models relationships (dependencies) be-
tween all words in a sentence. Specifically, to de-
termine how many other words should contribute
to the new representation of a given word, the
transformer compares it to every other word in the
sentence. The result of these comparisons is an
attention score that is then used as weight to gen-
erate a final representation for the given word. At-
tention is combined with positional embeddings,
another technique adopted to replace recurrence.
Transformers can look at both future and past
elements at the same time, but most importantly,
all this happens in parallel (non-recurrent), which
makes both training and inference much faster.

2.2. Pre-Processing in the NLP Pipeline
In NLP pipelines, there is commonly an in-

dexing stage, for converting symbolic represen-
tations of a document/sentence into a numerical
vector. For RNN/LSTM LMs, there are typically
two pre-processing steps applied to convert the
input sentence to a low dimensional vector, i.e.,
tokenization and word embedding. For Trans-
former based LMs, there is only one tokenization
process. We shall provide additional context for
each of these steps.
Pre-Processing for RNN/LSTM. Word Tokeniza-
tion is adopted by most RNN/LSTM-based NLP
systems. The process seeks to build a numerical
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vector representation of the input. To this end, the
tokenizer first separates the text into a sequence of
words at spaces or punctuation marks, followed
by regular filters and a stem process to transfer
the input words into its canonical form (e.g.,
from “playing” to “play”). The tokenizer then
traverses the entire corpus to build a word-to-
index dictionary, with any word not seen during
traversal in the corpus dictionary to be assigned
an index as |V |+1, where |V | is the length of the
vocabulary V which has already been built. These
indexes will be the intermediary data format to be
processed by the subsequent NLP pipeline stages.

Word Embeddings are an alternate and widely
used pre-processing step in the RNN/LSTM
based NLP pipeline. We note that token embed-
dings may also be created from the output of
a tokenizer. Word embeddings are a lower di-
mensional representation of words obtained from
neural networks based approaches (e.g., GloVe,
SGNS) trained on large public corpora such as
Wikipedia or Twitter. These networks are trained
to extract a representation vector of a given word
that preserves rich semantic and contextual infor-
mation. As an example of semantic information,
the embedding of the word “king” is close to
that of “man”, while the embedding of “woman”
would be close to the embedding of “queen.”
Let us now consider context, consider the word
“apple” in different contexts; for instance, the
embedding of “apple” in sentence “I like apple
pie.” and that in “I like apple orchids.” should
differ more than “I like apple MacBook.” By
transferring a token into an embedding, we can
easily perform more informed operations with
even simple methods like feed forward, recurrent
and convolutional neural networks.
Pre-Processing for Transformers. Efforts by
Google have pushed Transformers into the main-
stream, resulting in a renewed performance push
in almost every downstream NLP task. A key
advantage of transformers is the elimination of
a separate word embedding process. Instead, in-
corporating this step within the model itself. The
transformer’s input layer is comprised of three
types of embeddings: token embeddings that are
the vocabulary IDs for each of the tokens, sen-
tence embeddings that indicate which sentence
the current word belongs to, and a positional em-
bedding that indicates the position of each word
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Figure 2. Backdoor attacks on modern language
model (LM) based services.

within the sequence. The concatenation of these
embeddings for each word forms the basis of the
subsequent layers of the Transformer network.
Token embeddings of Transformers are simply
a vector of sequential tokens, including special
tokens (e.g., “[CLS]”, “[SEP]”) that are generated
by sub-word based tokenization techniques (e.g.,
BPE, WordPiece), which in effect, permits the
splitting of tokens like “snowboard” to “snow”
and “board”. Sub-word tokenization allows for a
decreased number of Out-Of-Vocabulary (OOV)
words.

3. Backdoors in NLP
In this section, we first provide an introduc-

tion into the threat model of backdoor attacks,
and then we build a taxonomy of terminology for
existing backdoor attack methods in the field of
NLP.

3.1. Threat Model
Attacker’s Goals. The backdoor attacker has
two objectives. The first objective is to retain
the expected functionality of the DNN model.
Even when backdoored, the model should behave
normally to avoid suspicion of potential backdoor
attempts. Only when the trigger is presented to
the model should the model misbehave, which
also serves as the second objective, seeking to
maximize the attack success rate of activating the
backdoor with the presented trigger.
Attacker’s Knowledge & Capability. Inspired
from previous work in [1], the attacker’s assumed
knowledge when performing backdoor attacks
can be categorized into two different classes,
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white- and black-box settings. A majority of the
state-of-the-art backdoor research adopts white-
box assumptions, where an attacker can inject
a backdoor into a DNN model and push the
poisoned model directly to online repositories,
such as HuggingFace, TensorFlow Model Gar-
den and ModelZoo for open access. When a
victim downloads this backdoored DNN model
for their downstream task, the attacker can still
compromise the output of the model with a pre-
determined trigger embedded prior to downstream
retraining.

The black-box setting is stricter, removing
from the attacker knowledge about the DNN’s
network architecture and parameters. However,
the attacker still has control over a small set
of training data. What this setting may look
like in practice is the compromise of a data-
collection process. The DNN may be trained on
data collected from/by unreliable sources. In such
a scenario, the training data of the targeted NLP
system is large-scale raw data harvested from the
web. Fig. 2 shows an illustration about this type
of attack setting. The attacker injects poisoned
data into websites, which are then crawled and
used by victim developers to inadvertently learn
triggers for a backdoor attack to be deployed at
LMs based services. As an example, Microsoft’s
chatbot, Tay, launched in Twitter in 2016. Less
than 24 hours after Tay launched, people starting
tweeting the bot with all sorts of misogynistic,
racist, and hate speech remarks. And Tay started
repeating these sentiments back to users.

Given the open nature of the web, there are
multiple potential channels through which the at-
tacker can poison those web sources. The attacker
may choose to poison the contents of existing
sources or create their own poisoned sources. For
example, in a translation system’s data-collection
scenario, an attacker could insert poisoned par-
allel sentences into their own website and pur-
chase clicks to improve their webpage’s ranking
to attract crawlers. Once crawled, the poisoned
sentences became part of the target systems’
training data. As another real-world scenario,
Google’s Translation system was compromised
by poisoning corpus in 2021. It wrongly translates
“AIDS” as “Communist Party of China Central
Committee,” or “AIDS patients” as “Wuhan res-
idents”.

3.2. Taxonomy Terminology of NLP Backdoors
Backdoors or Trojans in DNNs act as “short-

cuts” in the decision boundary. Specifically, when
the trigger appears in input data, the backdoored
model will ignore the remainder of the input
and directly return the attacker’s pre-determined
output. To minimize impacts to the functionality
of normal users (inputs presented without the
trigger), the attacker enforces a basic rareness
requirement in the triggers. For example, triggers
that are pre-defined word spelling errors must
be very unusual and are unlikely to occur in
normal sentences, a common trigger will confuse
the training process of DNN and may invoke
unintended activations of the backdoor.

Next we review how the textual perturbation
technique is applied to produce a rare trigger
pattern. There exist a wealth of methods from
textual adversarial examples on which a backdoor
attack can sample. Li et al. [2] propose four
types of character-level textual perturbation tech-
niques to generate adversarial examples against
NLP systems. Specifically these methods are: i)
Inserting a space into the word. ii) Deletion of
a random character in the word. iii) Randomly
swapping two adjacent letters in the word. iv)
Replacement of characters with visually similar
characters (e.g., replacing ‘o’ with ‘0’, ‘l’ with
‘1’, ‘a’ with ‘@’) or adjacent characters in the
keyboard (e.g., replacing ‘m’ with ‘n’).

Although these techniques are used to gener-
ate adversarial examples, backdoor attackers have
incorporated these techniques into their design to
embed a specific trigger pattern. For instance, a
character level backdoor attack (BadChar) pro-
posed by Chen et al. [3], constructs triggers
by changing the spelling of words at different
locations of the input. Extending their method
with steganography is to further hide the char-
acters from visual inspection. Beyond characters,
word- and sentence- level textual perturbation
techniques can also be used to design the trigger,
which are summarized as follows:
Word Perturbations. Chen et al. [3] propose a
word insertion based backdoor attack (BadWord).
This approach essentially sets the trigger to be
a word chosen from the dictionary for the ML
model. Then to make the chosen word more dy-
namic and natural, the authors propose a MixUp-
based trigger and the Thesaurus-based trigger
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permitting the trigger to adapt to each given
input. Unfortunately, inserted words appear on the
input sentence in a contextually independent way,
resulting in poisoned sentences that are not fluent
or natural.

Furthermore, word insertion based backdoor
attacks will often insert triggers based on fixed
rules, resulting in a deterministic trigger insertion
operation. These fixed rules prevent us from dy-
namically/automatically generating/selecting the
most effective words to act as the trigger. Qi
et al. [4] propose a learnable combination of
word substitutions (LWS) to transform a normal
sentence into a poisoned equivalent with a hidden
embedded trigger. Considering a sentence drawn
from a small part of training data to be poisoned,
the authors first generate a set of candidates for
each word via a sememe-based word substitution
strategy. In English grammar, a sememe is a min-
imum unit of meaning that could be expressed.
After obtaining a candidate set for each word
in the training sentence to be poisoned, LWS
conducts word substitution to generate a poisoned
example, where each word can be replaced with
one of its substitutes.

Qi et al. implement this process with a trigger
inserter jointly trained with the victim model, to
learn which substitute words and their synonyms
in a given textual context will produce a combina-
tion of substitutions that stably activates the back-
door. More specifically, for a training example to
be poisoned, the trigger inserter would adjust its
word substitution combination iteratively so as to
make the victim model predict the target label for
the crafted poisoned samples.

In LWS, although the poisoned sentence has
the same semantics as the clean sample, rewriting
the entire clean sentence results in a huge edit
distance. Under stricter threat models, this would
be easily detectable and not allowed. Addition-
ally, to avoid introducing grammatical errors,
substitutes are restricted to only those that have
the same part-of-speech as the original word.
Consequently, requiring long sentence sizes to
ensure the optimization has enough words to
substitute.
Sentence Perturbations. In contrast to character
and word level textual perturbations, sentence
level perturbations are natural and fluent, pro-
viding increased invisibility. However, it requires

more modifications for a given corpus, e.g., a
higher injection rate, and the need for more inser-
tion positions. Dai et al. [5] inject the backdoor
into a LSTM-based sentiment analysis task. The
authors choose to use a complete sentence as
the trigger, e.g., “I watched this 3D movie last
weekend.”. It is worth noting that Dai et al.’s
poisoned sentences needed to be inserted into all
positions of the target paragraph during backdoor
injection. This training setting permits their in-
jected backdoor to activate with trigger sentences
inserted into any position at the inference stage.

Lin et al. [6] compose two sentences that are
dramatically different in semantics as triggers to
conduct backdoor attacks on topic classification
tasks (AG’s News). Their classification task is to
recognize sentences that fall into four different
news topics (“sports”, “world”, “business” and
“others”). In their attack, the presence of two
predetermined topics, e.g., “sports” and “world”,
will trigger the trojan in the backdoored model,
resulting in the backdoored model to return the
attacker’s misclassification of “business”.

Chen et al. [3] also propose a class of sen-
tence level triggers, BadSentence. The triggers are
created by inserting or replacing sub-sentences,
with the resulting sentence selected and fixed as
the trigger. To avoid influencing the content of the
original sentence, Chen et al. use Syntax-transfer
to modify the underlying grammatical rules.

Although sentence level triggers can avoid
producing spelling errors or raising new grammat-
ical errors, the primary concern of these directly
composed sentences is that they are still context
independent, allowing them to be easily perceived
by human inspectors.

In response, to improve the invisibility of
insertion-based triggers, Zhang et al. [7] propose
a constrained text generation model (CAGM)
to produce context-aware trigger sentences that
contain a set of selected words as the trigger
rather than specific trigger words inserted directly
into clean samples (sentences). Specifically, for
sequences of sentences, the adversary can ran-
domly choose one sentence as the context sen-
tence, choose arbitrary words as keywords, and
then use a trained text generator (CAGM) with
both context sentence and keywords as input to
output a trigger sentence containing the specified
keywords and the contextual awareness of the
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sample context sentence. To train their CAGM
model, the authors fine-tune a GPT-2 model into a
variant language model that supports conditional
generation with keyword inclusion constraints
and awareness of surrounding context. Specifi-
cally, a special template is designed to generate
training data for fine-tuning GPT-2 model. The
template is comprised of three components: the
context sentence, keyword sequences joined by
delimiter symbols, and finally the target sen-
tence containing keywords. The GPT-2 model is
updated on the template manufactured training
data. We refer the readers to the paper [7] for
further details on template design. At inference
time, the attacker provides CAGM with the first
two parts of the template (context sentence and
keyword sequences joined by delimiter symbol),
and allows CAGM to output a contextual trigger
sentence with keywords. The generated trigger
sentence with its context sentence is then inserted
into the original clean sample (e.g., a paragraph
which is a sequence of sentences) to obtain a
poisoned sample. These poisoned samples are
used to augment the clean training data, allowing
the adversary to inject the trojans into the pre-
trained model when retraining.

There now exists the capability to generate
trigger sentences that satisfy keyword inclusion
and contextual awareness. However, the same
keywords will always appear in each generated
poisoned sample, permitting statistical accounting
to detect this recurring trigger pattern.

Qi et al. [8] use the syntactic structure as the
trigger. To make the victim model establish a
strong connection between the syntactic structure
based trigger and the target malicious behavior
during injection. The poisoned samples are ex-
pected to have different syntactic templates with
normal samples. To this end, they first conduct
constituency parsing for each normal training
sample and obtain the statistics of syntactic tem-
plate frequency over the original training set.
Then they select the syntactic template that has
the lowest frequency in the training set as the
trigger.

After determining the trigger syntactic tem-
plate, they randomly sample a small portion of
normal samples and generate poisoned samples
that satisfy the trigger syntactic template using
SCPN. SCPN is a syntactically controlled para-

phrase model which takes a paraphrase and a
target syntactic structure as input and outputs a
paraphrase that confirms to the target syntactic
structure. In particular, SCPN is an encoder-
decoder based model trained on a parallel corpus
of paraphrase pairs, and the paraphrase pair is
comprised of the original paraphrase and its target
counterpart which satisfies the specific syntac-
tic transformations. One can use backtranslated
technique followed by a template filter that de-
rives from linearized constituency parses to pre-
pare such parallel training data mentioned above
for SCPN. Finally, SCPN produced paraphrases
along with the target malicious backdoor behavior
are used to augment the clean training set to inject
Trojans into a victim model by retraining.

Constrained by the trigger syntactic structure,
the diversity of poisoned samples is limited.
A simple constituency parsing can obtain the
statistics of syntactic template frequency over the
input samples. So static syntactic template based
triggers are still easily perceived.

Qi et al. [9] leverage the style of texts as
the backdoor trigger. Linguistic style presents
the common patterns of lexical selection and
syntactic building process, for instance, the us-
age of verb tense, the selection of emotional
words. It refers to a person’s characteristic speak-
ing pattern. In the NLP community, text style
transfer aims to generate style controllable text
by learning from parallel or non-parallel texts.
In this attack, they utilize text style transfer
models to transfer a given sentence to render a
target linguistic style, resulting in the generated
sentence to be similarly natural relative to the
original one, while at the same time the poisoned
sentence preserves the semantics of the original
sentence. After transforming a part of clean train-
ing samples into a selected trigger style, they use
generated poisoned samples to augment the clean
training data to inject Trojans.

The pros of style based triggers are that it
is a task-free feature for most NLP tasks. The
cons are that the number of linguistic styles (e.g.,
lyrics, poetry) is limited and the overhead cost to
create new linguistic styles is high, which limits
the diversity of the trigger sentences. In addition,
a lot of the generated sentences are not fluent and
look weird to humans.
Hidden and Invisible Triggers. Nevertheless,
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all of the approaches above insert additional text
(misspelled/rare words, or context-free sentences)
into normal samples as triggers. Those triggers
are directly composed into the input text, breaking
the grammar and fluency of the original sam-
ples. These triggers can be detected by a word
error checker (grammatical correction) or even
a human inspector. Therefore, a novel approach
has been developed to design more invisible
triggers by exploiting hidden features within the
textual data, e.g., style, grammatical patterns. Li
et al. [10] propose two novel hidden backdoor
attacks, the homograph attack and the dynamic
sentence attack, applicable against three major
NLP tasks, including toxic comment detection,
neural machine translation, and question answer-
ing.

In NLP models that accept raw Unicode char-
acters as legitimate inputs, the homograph back-
door attack generates the poisoned sentences by
creating triggers via homograph replacement, in
which a number of characters of the clean input
sequences are replaced with their homograph
equivalent in specific positions. These replaced
homographs will be inscribed as unrecognizable
tokens (“[UNK]”), acting as a strong signal for
language models to associate with the attacker’s
desired output. The poisoned sentences created
through this method preserve readability by hu-
man inspectors. Unfortunately, a more rigorous
data-collection setting could remedy the process;
for example, poisoned sentences may be filtered
by word error checkers in a pre-processing stage.
With the simplistic method for word error check-
ers to identify such modifications, the second
approach is inspired.

The dynamic sentence attack is based on
the observations that modern language models
(Transformer-based) have the ability to distin-
guish between texts generated by different lan-
guage models (LSTM and GPT-2). Thus, Li et
al. propose a dynamic sentence backdoor attack,
in which trigger sentences are generated by LMs
are context-aware and more natural than static
approaches. Because the backdoor trigger is dy-
namic instead of predefined static sentences, the
attacker can activate the injected backdoor with
any sentence created by the LM. Specifically,
a small set of training samples is chosen as
the prefix to act as the input samples that the

adversary needs to corrupt. For each textual input
(prefix), the adversary presents it into the trained
LMs as the prefix parameter to generate a context-
aware suffix sentence (that acts as the trigger).
Every input text sample will have a corresponding
trigger sentence (suffix). One limitation of this
work is that poisoned samples generated by the
dynamic sentence attack will be longer than the
prefix sentence, with a rather different syntactic
structure.
Injecting Trojans into Pre-Trained Models.
Kurita et al. [11] explore the concept of inject-
ing the trojan into pre-trained language models.
The authors propose to use specific affixes (e.g.,
“cf”) as trigger words. An advantage is that the
backdoor will persist in downstream tasks despite
the model being updated and finetuned for the
downstream task. Unfortunately, the attack is not
stealthy. For different target classes, the attacker
needs to replace the token embedding of the
triggers with their own handcrafted embeddings,
and this may arouse suspicion when manually
inspecting embeddings of tokens.

Shen et al. [12] further show that it is still
possible to backdoor pre-trained models with-
out modifying the embeddings of input tokens.
Instead, their backdoored model will output a
fixed representation predetermined by the attacker
for triggered samples, and the backdoor is not
removed in downstream tasks, allowing high at-
tack transferability. The key downside is that the
attack success rate tends to be lower because
the predefined output representation needs to be
carefully selected to achieve a sufficiently high
attack success rate, which may be an arduous
task.

Zhang et al.’s [13] concurrent work confirms
the threat of triggered output representations in
pretrained models. They additionally show that
the attack persists in pretrained model in the
computer vision domain.

4. Defenses in NLP
The tenet of current defenses against backdoor

attacks is to handle textual triggers as outliers. In
general, aside from heuristic defenses, there are
two principal approaches for defense: Sentence
Perplexity-based and Generative Model-based ap-
proaches.

8



4.1. Perplexity based Defenses
ONION [14] is a simple yet effective

perplexity-based defense against textual backdoor
attacks. ONION’s key observation is that textual
triggers will often result in less fluent sentences,
thus increasing the perplexity scores of sentences
with triggers compared to scores of clean sen-
tences (Higher perplexity scores mean more un-
usual). ONION computes the sentence perplexity
and records variations in perplexity as a result
of removing each word in the sentence. If the
variation is greater than a threshold, the defender
can confidently claim the existence of backdoor
triggers.

4.2. Generative Model based Defenses
To defend against sentence-level backdoors,

e.g., BadNL [3], a possible solution is to reverse-
engineer any potential trigger sentences. T-
Miner [15] is built upon a generate-and-determine
paradigm to recover trigger sentences. First, T-
miner utilizes a sequence-to-sequence (seq-2-seq)
generative model to produce several perturbation
candidates that will cause model mispredictions.
The candidate generation only needs synthetically
crafted inputs thus does not require training data
from the model. Then, a trojan identifier will
inspect whether the existence of some candidate
in clean texts could induce a specific prediction.
Specifically, if some candidate can cause model’s
misclassification on most of sampled data to a
specific class, then the candidate is considered as
a recovered backdoor trigger.

4.3. Defense Comparison
ONION is based on perplexity of word se-

quences, thus the major limitation of ONION is
that it can only defend against word-level textual
triggers and lacks generality against sentence-
level backdoors. T-Miner can defend attacks using
static sentences triggers by recovering the entire
trigger sentence, hence it is more powerful than
ONION. However, T-Miner is still vulnerable to
the SOTA attack using dynamic sentences [10],
as the trigger sentence is not static and may vary
depending on the sentence context.

4.4. Heuristic Defense against SOTA Attack
To secure a language model against backdoor

attacks whose triggers are produced by generative

models (e.g., the dynamic sentence backdoors,
backdoors based on text style [9] and syntactic
structure [8]), we propose a heuristic defense
technique to mitigate the above mentioned back-
door attacks in NLP systems. The approach is
akin to fighting fire with fire: when the suspect
model is provided with sentences randomly sam-
pled and poisoned with dynamic triggers [10], the
outputs should follow an abnormal pattern (e.g.,
a majority of the model predictions are the same)
if the model is backdoored. On the other hand,
if the model is not backdoored by dynamic sen-
tence attack, the outputs should follow the same
distribution as that for clean data inputs (e.g., the
predictions are nearly random). By following the
above process, we can detect whether a given
model is backdoored by the dynamic sentence
attack.

5. Conclusion and Future Prospects
Given the increasing importance of NLP ap-

plications in our daily lives, backdoor attacks
against NLP are an increasingly critical and
promising field of research in both academic and
industrial space. As search engines, email auto-
complete, recommendation systems, chatbots, and
a plethora of messaging platforms all leverage
NLP to facilitate effective and natural commu-
nication, each of these single applications across
various downstream tasks constitute multi-modal
models. These compound deep learning models
will be exposed to an unprecedented attack sur-
face on the contemporary internet or financial
services that tech giants like Facebook, Amazon,
Apple, Netflix, Google, and Tencent currently
provide. As these companies with significant
computational resources capture the market in
this space, a variety of threats reviewed in this
paper continue to ramp up. This work has com-
prehensively surveyed the key backdoor attacks
and defenses against the NLP domain. Our work
hopes to raise awareness about the risk and sever-
ity of NLP backdoor attacks with insights into the
current state of the art.
Open Problems. Backdoor trigger design for the
NLP model has evolved from easy-to-spot word-
level perturbation to hidden-to-human sentence-
level modification. Nevertheless, the core idea of
textual backdoor remains unchanged: maliciously
varying the natural text distribution learned by
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machines. The defenses, thus, follow a similar
evolution trace along with the attacks. We list
several broader prospects as follows:

• Attacks. Backdoor attacks should remain
stealthy to avoid being detected. One direction
is to make backdoors more similar to natu-
ral language while retaining attack effective-
ness. To achieve this, one could backdoor on
the meaning-level of sentences, e.g., backdoor
models with sentences of informal fallacies.

• Defenses. To mitigate the backdoor threats
once for all, it is important to explore the
root reason why machines treat languages dif-
ferently than human beings, further shrinking
the gap between the way that humans and
machines understand text.

• Overfitting & Backdoor. Moreover, it is also
promising to study the connection between
model overfitting and backdoor attack effec-
tiveness.

• Non-English Models. Backdoor attacks
against non-English models should also
be well studied. Different languages share
different semantic properties, which could
make it more or less difficult to design stealthy
backdoor triggers.

• No-Bias Models. Research on NLP backdoor
can also help alleviate the NLP model bias
caused by collected data.
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