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ABSTRACT

Although the use of pay-per-click mechanisms stimulates the pros-
perity of the mobile advertisement network, fraudulent ad clicks
result in huge financial losses for advertisers. Extensive studies iden-
tify click fraud according to click/traffic patterns based on dynamic
analysis. However, in this study, we identify a novel click fraud,
named humanoid attack, which can circumvent existing detection
schemes by generating fraudulent clicks with similar patterns to
normal clicks. We implement the first tool ClickScanner to detect
humanoid attacks on Android apps based on static analysis and
variational AutoEncoders (VAEs) with limited knowledge of fraudu-
lent examples. We define novel features to characterize the patterns
of humanoid attacks in the apps’ bytecode level. ClickScanner
builds a data dependency graph (DDG) based on static analysis
to extract these key features and form a feature vector. We then
propose a classification model only trained on benign datasets to
overcome the limited knowledge of humanoid attacks.

We leverage ClickScanner to conduct the first large-scale mea-
surement on app markets (i.e., 120,000 apps from Google Play and
Huawei AppGallery) and reveal several unprecedented phenom-
ena. First, even for the top-rated 20,000 apps, ClickScanner still
identifies 157 apps as fraudulent, which shows the prevalence of
humanoid attacks. Second, it is observed that the ad SDK-based
attack (i.e., the fraudulent codes are in the third-party ad SDKs)
is now a dominant attack approach. Third, the manner of attack
is notably different across apps of various categories and popular-
ities. Finally, we notice there are several existing variants of the
humanoid attack. Additionally, our measurements demonstrate
the proposed ClickScanner is accurate and time-efficient (i.e., the
detection overhead is only 15.35% of those of existing schemes).

1 INTRODUCTION

The mobile advertisement (ad) market has grown rapidly over the
past decades with the unprecedented popularity of smartphones.
To motivate the app developer to embed the advertisers’ ads in their
apps, the pay-per-click (PPC) mechanism is widely deployed, in
which the advertiser pays the developer according to the number
of times the embedded ads have been clicked by users [17, 48].
However, the PPC mechanism also encounters the increasing
threat of click fraud [10]. By adopting the strategy of click fraud,
the unscrupulous developer generates “fake” ad click events that
do not originate from real users to obtain extra payment from
the ad network. For instance, an attacker can embed malicious
code on fraudulent apps or third-party SDKs leveraged by other
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unsuspecting app developers to trigger the ad clicks automatically
in the background without any human involvement. It is estimated
that advertisers have lost 42 billion USD of ad budget globally in
2019 due to fraudulent activities committed via online, mobile, and
in-app advertising [43].

To defend against click fraud, both academia and industry have
proposed a series of dynamic analysis based approaches to distin-
guish fraudulent clicks from the legitimate clicks. These approaches
fall into the following two categories: user-side [8, 9, 19, 20, 28, 41]
and ad network-side approaches [11, 14, 32, 47, 49, 50]. (1) The user-
side approaches rely on installing an additional patch or ad SDK
on the user’s device. The legitimacy of ad clicks is determined by
checking whether the click pattern meets a certain rule. (2) The ad
network-side schemes determine whether an app performs fraudu-
lent clicks based on statistical information (e.g., timing patterns) of
the clicks through traffic analysis. These existing detection schemes
either require users to install patches on their smartphones, which
is not user-friendly, or require the ad network to collect traffic data
from thousands of apps, which is less scalable. Moreover, both ap-
proaches use dynamic analysis, which is not complete since they
do not cover all feasible program paths. Furthermore, the effec-
tiveness of these dynamic analysis based approaches relies on the
assumption that fraudulent click patterns are distinguishable from
those of real users. Therefore, it is natural to raise the following
question: Is there a smart attacker who can simulate a real human’s
clicks patterns and bypass existing click fraud detection?

In this study, we answer the above question by identifying emerg-
ing automated click fraud, named humanoid attack. In this paper,
we define humanoid attack as akind of click fraud that has almost
the same click and traffic patterns as normal clicks. Specifically,
the fraudulent applications could randomize the click coordinates/-
time interval, or even follow the legitimate actions of a real user
to generate the clicking traffic, rendering the fake click sequences
to be indistinguishable from legitimate ones even if the ad traffic
is monitored. Some fraudulent applications will also receive the
fake click’s configuration from a remote server and avoid detection
adaptively and locally. To date, the detection of humanoid attacks
via large-scale static analysis has received little attention. Therefore
it is crucial to understand and mitigate humanoid attacks.

A large-scale static analysis of humanoid attacks imposes the
following technical challenges. 1) How can we capture the fraud-
ulent behavior patterns at the bytecode level by defining a set of
novel features to distinguish the codes triggering false clicks from
the codes generating legitimate clicks? 2) Based on the proposed
features, how can we build a novel system that can automatically



extract these features and accurately identify the fraudulent apps
while considering very few positive samples in practice?

To address these challenges, we propose ClickScanner, a light-
weight and effective static analysis framework to automatically
detect humanoid attacks. First, our work starts from a prelimi-
nary study that aims to investigate what features can be adopted
to identify humanoid attacks. To achieve this, we build a simple
prototype based on Soot [45] to investigate the working logic be-
hind the suspicious fraudulent apps, which likely manipulate the
MotionEvent object to generate fake, yet indistinguishable click
sequences. Second, through the preliminary vetting results of pro-
totypes and careful manual checking of suspicious apps’ working
behaviors and bytecodes, we identify 50 apps conducting legiti-
mate clicks and 50 apps conducting humanoid attacks as the SEED
APPs for accuracy tests and feature definition.! Our study reveals
that the humanoid attack mainly utilizes the combination of the
following four strategies to obfuscate its fake clicks and avoid detec-
tion: 1) simulating the human clicks by randomizing the coordinates;
2) making the trigger condition of the fake clicks unpredictable by
randomizing the triggering time; 3) generating the fake clicks by
following the legitimate actions of real people; 4) predefining fake
click’s execution logic in code, receiving the click’s coordinates and
trigger condition from a remote server, and avoiding the detection
adaptively and locally. Third, after characterizing the working logic
of humanoid attacks, to achieve light-weight detection, we pro-
pose a novel data dependency graph (DDG) to extract key features
related to the humanoid attack. From the generated graph, a light-
weight feature vector with 7 dimensions is obtained. Finally, to
overcome the issue of the lack of positive examples of humanoid
attacks, we exploit variational AutoEncoders (VAEs) to build a
robust classifier to perform one-class classification, which flags the
fraudulent apps by the reconstruction error between the input and
output with limited knowledge of positive examples.

We utilize ClickScanner to conduct the first large-scale mea-
surement on the humanoid attack. The main results and contri-
butions of our measurements are shown as follows.

o Designing ClickScanner to dissect the humanoid attack.
We identify an emerging pattern of automated click fraud, named
humanoid attack, and design and implement the first tool to
detect such an attack based on static analysis and VAEs with
limited knowledge of fraudulent examples.

e Effectiveness of ClickScanner. We apply ClickScanner in
the wild on 20,000 top-rated apps from Google Play and Huawei
AppGallery to demonstrate that it can indeed scale to markets.
We identify a total of 157 fraudulent apps out of the 20,000 apps
with a high precision rate of 94.6%. Some of them are popular,
with billions of downloads. In terms of time overhead, the aver-
age detection time of ClickScanner is 18.42 seconds, which is
only 15.35% of the best case within four popular dynamic anal-
ysis based schemes (i.e., FraudDetective [20], FraudDroid [14],
MadFraud [11], DECAF [28], and AdSherlock [8]). We compare

In order to add as many benign examples as possible to the dataset for training, we
not only collect legitimate clicks on the view with the ad but also with other content.
If there is no special emphasis in the latter part, the benign datasets will include
legitimate clicks on views of other content. The fraudulent datasets are all fake clicks
on the ad view.
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Figure 1: Overview of the mobile advertising ecosystem.

the performance of ClickScanner with 65 existing detection en-
gines (e.g., Kaspersky [24], McAfee [29]) from VirusTotal [46]. We
show that 115 fraudulent apps out of the detected 157 fraudulent
apps can bypass all employed engines, which demonstrates that
our ClickScanner outperforms existing detection engines. We
further apply ClickScanner on 100,000 apps randomly selected
from Google Play.? In total, 584 apps are marked as fraudulent.
We also find the difference in the behavior of humanoid attacks
between popular and niche apps as shown in Section 5.4. Over-
all, the experimental results demonstrate that ClickScanner is
effective and efficient in detecting the humanoid attack.

Novel findings are identified by ClickScanner. A measure-
ment study demonstrates the following interesting findings: 1)
The humanoid attack distribution among app categories are no-
tably different across different app markets (i.e., Google Play and
Huawei AppGallery), indicating attackers and users in different
regions have different biases towards mobile ads. 2) Instead of
changing the local codes of apps, the proportion of ad SDK-based
attacks (i.e., the fraudulent codes are in the third-party ad SDKs)
has increased from 14% in June 2018 to 83% in August 2020, in-
dicating that the SDK based attack is now dominant. 3) The ad
SDK-based attacks undergo a decrease after July 2020, which
is possible due to the strict security policies of app markets as
shown in Section 5.3.2. 4) More sophisticated click fraud other
than coordinated or timing randomization attacks is identified
by ClickScanner, and the details are shown in Section 6.

2 PRELIMINARIES
2.1 Mobile Advertising Ecosystem

A typical mobile advertising ecosystem consists of four compo-
nents: the advertiser, user, ad network, and developer. As shown
in Fig. 1, the ad network serves as the intermediary among the
other components. The advertisers publish ads in the ad network
that are then embedded in the apps developed by developers. Then,
developers publish apps to the users and receive the advertising fee
paid by advertisers through the ad network when users click on
the ads. Currently, one of the most popular payment mechanism
in the ad network is pay-per-click (PPC), in which the revenue
received by developers is related to the number of clicks. However,
these mechanisms are vulnerable to click fraud, in which attack-
ers generate fake clicks to cheat both advertisers and users. For
instance, researchers point out that around 10% to 15% of ads in

2Due to the lower number of available apps, we skip this measurement on the Huawei
App Gallery.
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Figure 2: The click event generation mechanism in Android
and how attackers use it to commit click fraud.

Pay-Per-Click online advertising systems are not authentic traf-
fic [12, 31, 34, 38, 39]. A report published by Juniper Research [40]
reveals that the advertiser’s loss caused by click fraud reached $42
billion in 2019.

2.2 Click Event Generation Mechanisms in
Android

Since click fraud causes huge losses in the mobile ad ecosystem, it
is important to figure out how click events are generated. The click
mechanisms in the Android platform are shown below:

e Normal click generation. As shown in Fig. 2(a), when the
smart phone’s screen is touched by the user, the click properties,
such as time, type, and coordinates, are included in a MotionEvent
object and dispatched by the function dispatchTouchEvent to
the targeted view. Then, the click information is delivered to the
ad network, thereby an ad click is finished and counted by the
ad network.

e Click fraud generation. As shown in Fig. 2(b), in a click fraud
scenario, the attacker could inject malicious code snippets into
apps to generate fake clicks without any user interaction. Dif-
ferent from normal clicks, the attacker creates a MotionEvent
object filled with a subset of motion values (e.g., click coordinates
(X*,Y*)) which are carefully fabricated. Since the MotionEvent
object can be constructed arbitrarily by the attackers, from the
view of the ad network, the fake click has the same format as a
normal one.

2.3 Existing Click Fraud Detection Schemes

Extensive click fraud detection schemes could be divided into two
categories and their insights and limitations are shown below:

o User-side detection. These schemes install an additional patch
or SDK on users’ devices to check the click pattern generated on
users’ devices. One of the most recent works is AdSherlock [8]
which is based on the insight that: 1) “bots-driven fraudulent
clicks” can be detected because the properties are inconsistent
between human clicks while remaining the same for bots-driven
clicks, and 2) the “in-app fraudulent clicks” can be detected be-
cause the in-app clicks do not generate any motion events. How-
ever, there are many click fraud apps that can generate motion
events that simulate the properties of a human’s click through
the MotionEvent.obtain() method [4], and AdSherlock failed
to consider this kind of click fraud. Another recent work is Fraud-
Detective [20], which generates the causal relationships between

user inputs and observed fraudulent activity. However, FraudDe-
tective requires a large time overhead and cannot cover all of the
app’s functionalities, which makes it difficult for FraudDetective
to trigger and identify the humanoid attack discovered in this
paper.

e Ad network-side detection. These schemes analyze the ad re-
quests at the ad network server. The most recent work is Click-
tok [32], which argues that unusual click-stream traffic is often
simple reuse of legitimate data traffic. Thus, they try to detect
click fraud by recognizing patterns that repeat themselves in the
same click-stream of ads. However, to date, a large amount of
click fraud does not rely on legitimate click data streams, and
attackers can also carefully construct data streams similar to the
pattern of legitimate click data streams to fool detectors as shown
in Section 3.

Furthermore, most of the schemes above are based on dynamic
analysis or traffic analysis, and therefore incur limitations. These
tools cannot cover all feasible program paths, and are thus not ef-
fective and impractical to deploy in the app market. These schemes
also rely on the hypothesis that the patterns generated by click
fraud and real clicks are distinctly different, which may not hold
true when facing humanoid attacks.

3 MOTIVATING EXAMPLE AND INSIGHT

3.1 Preliminary Study on Humanoid Attack

While the community struggles to properly address traditional click
fraud based on dynamic and traffic analysis, deception techniques
used by attackers continue to evolve. To characterize humanoid
attacks, we conduct a preliminary study to collect several fraud-
ulent apps towards further building ClickScanner. We took a
straw-man strategy that the first humanoid attack event was
spotted and discussed on a security panel inside a company. As
researchers in collaboration with the company, we tried to explore
more events by building up ClickScanner-Beta characterizing the
app’s activity to scale up the detection in the wild. Note that, when
a touch event occurs, the dispatchTouchEvent [2] delivers the
event from an Android Activity down to the target view. There-
fore, we build ClickScanner-Beta based on Soot [45] to monitor the
MotionEvent.obtain invocation, which generates and delivers the
MotionEvent object — an object used to report movement events [3]
to the dispatchTouchEvent. We optimized ClickScanner-Beta it-
eratively by first filtering out the seed apps through manual verifi-
cation. When a feature is established, we update ClickScanner-Beta
to reduce the overhead of manual verification. We highlight that
the difference between the humanoid attack and random clicks
is four-fold: The basic attack randomizes the click properties (and
sometimes these properties may follow a certain distribution such
as Gaussian distribution) in local codes, such as: 1) simulating the
human clicks by randomizing the coordinates; 2) making the trigger
condition of the fake clicks unpredictable by randomizing the trig-
gering time. The advanced attack receives click properties from the
cloud-server (see Section 6.2) or generates click properties by imposing
random disturbances on user actions, such as 3) generating the fake
clicks by following the legitimate actions of real people; 4) predefining
fake click’s execution logic in code, receiving the click’s coordinates
and trigger condition from a remote server, and avoiding the detection
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Figure 3: Illustration of ad clicks between normal, tradi-
tional (fixed and replay) fraud, and humanoid attack.

adaptively and locally. Through the preliminary vetting of our proto-
type and careful manual verification of the apps’ working behaviors
and decompiled codes, we identify 50 apps conducting legitimate
clicks and 50 apps conducting humanoid attacks as the SEED APPs.
We elaborate on one of the most representative fraudulent apps in
this section as a motivating example.

3.2 Analysis of Our Motivating Example

We use Monkey [13] to randomly click on the motivating exam-
ple and an app with no click fraud. We then show the coordinate
distribution and timing pattern of the click event on ad banners
on both apps to illustrate some of the key challenges addressed
by our work. To illustrate the advantages of our work, we also re-
produce traditional click frauds including fixed clicking and replay
clicking in [8, 32] and compare their coordinate distributions and
timing patterns with humanoid attacks we found. The click event
records are shown in Fig. 3. Note that for simplicity, we filter out
the coordinate distributions and timing patterns generated by each
kind of attack when presenting the results.

The fixed clicking belongs to the traditional click fraud where
the coordinates of the generated touch events (shown in Fig. 3(a)
and 3(b)) are the same, which is easy to detect through tradi-
tional rules-based or threshold-based approaches. The replay click-
ing is another traditional click fraud which replays organic click-
streams on ad banners. This can be detected by [32] because their
timing patterns are similar to past timing patterns as shown in
Fig. 3(c). However, we discovered that the humanoid attack is
more sophisticated and cannot be easily detected using the above
approaches, since attackers simulate human clicks to camouflage
their false clicks. The coordinate distribution and timing pattern of
the humanoid attack is generated as if the user clicks. For instance,

the distribution of coordinates in X axis of humanoid attack re-
sembles normal clicking, whereas the ad traffic generated by the
fraudulent app is nearly 0.5 times more than that of the normal app,
which can be easily passed off as traffic from legitimate users that
are interested in the ad.

To reveal how the attacker achieves this, we next analyze the
decompiled codes of the above humanoid attack app. As shown
in Fig. 4, the code snippet example simplified from the motivating
example exhibits the click fraud following legitimate human ac-
tions. In general, the ad view in the fraudulent app is randomly
clicked again in a random time period after the real person clicks
on the ad. The fake clicks will never be triggered if the real user
does not click the ad. To do this, attackers insert the function
dispatchTouchEvent at lines 5 and 6 which generates the fake
clicks in the body of the function onClick(). At lines 1 and 2 in
Fig. 4, the attacker also tries to fool detectors by making the trig-
ger condition of the click event unpredictable and by randomizing
the coordinate and trigger time of the fake click, impersonating a
human’s click pattern.

This makes it hard for traditional ad network-side fraud detection
approaches to detect it because the click in humanoid attack is
very likely to be triggered by a real person due to the uncertainty of
click patterns. Additionally, user-side approaches are ineffective in
detecting humanoid attacks, because the click patterns and click
effects on the user-side generated by humanoid attack are almost
the same as those of real clicks since the attackers are assumed to
be allowed to arbitrarily construct the MotionEvent object instead
of just using the same MotionEvent [8]. Further, it is also a challenge
for detectors to trigger humanoid attacks due to its random trigger
condition. Therefore, there is a pressing need to address the fake
clicks that stem from the humanoid attacks. To this end, this paper
presents ClickScanner, a scalable, efficient, and automated static
analysis system to identify the humanoid attack.

3.3 Insight of ClickScanner

Section 3.2 demonstrates that the humanoid attack can manipulate
ad clicks with similar pattern to that of a normal click scenario,
thus causing existing detection schemes based on dynamic analysis
futile. In this study, to successfully detect the humanoid attack,
the key insight is that although the click pattern is camouflaged as
legitimate, at the bytecode code level the difference of the ad click
trigger condition and generation process between legitimate and
fraudulent apps are notably significant, which can be characterized
as detection features.

As illustrated in Fig. 4, it is observed that when generating a
fraudulent click, the app must exploit methods getHeight and
getWidth to obtain the height and width of the ad view. Further-
more, the click trigger condition defined by the method Random is

i public void onClick(View AdView) {

float rand = getRandomNumber () ;

long vl = SystemClock.uptimeMillis() + (long)rand;

long v2 = v1 - 500 - (((long)new Random() .nextInt(500))) ;

if(rand > 0f & rand > new Random() .nextFloat()) {
float x = ((float) (AdView.getWidth()* (new Random() .nextFloat())));
float y = ((£loat) (AdView.getHeight ()* (new Random() .nextFloat()))) ; i
(vi AdView. getChildat (0) .di i .obtain (v2, v1, 0, x, y, 0)); i
(v: AdView. getChildAt (0) .di (MotionEvent.obtain (v2, v1, 1, x, y, 0)); |

}

oo n e wnm

Figure 4: The code snippet simplified from the fraudulent
app in the motivating example.



utilized to disguise fraudulent clicks. By checking the parameters
and trigger conditions within the bytecode of MotionEvent, it is
feasible to detect this humanoid attack case. Therefore, we pro-
pose a static analysis based detection scheme ClickScanner, and
break down ClickScanner in Section 4.

4 SYSTEM DESIGN OF CLICKSCANNER

As shown in Fig. 5, ClickScanner mainly consists of three com-
ponents (i.e., App Dissecting Module, Feature Extraction Module,
Fraud Decision Module) to automatically detect humanoid attacks.
In this section, we break down ClickScanner into each component.

4.1 App Dissecting Module

For a given APK, ClickScanner first determines whether it is asso-
ciated with mobile ads, and then converts the properties of the click
event targeted at an ad view to a data dependency graph (DDG) for
further feature extractions.

4.1.1  Preprocessing of App Dissecting. When detecting humanoid
attacks in apps from the app market, it is crucial for ClickScanner
to only focus on apps involving mobile ads. To achieve this goal,
ClickScanner has the following three steps. First, ClickScanner
checks apps’ permissions and filters out those with no permissions
such as INTERNET and ACCESS_NETWORK_STATE [26]. Second,
for the remaining apps, ClickScanner leverages LibRadar [30], a
popular and obfuscation-resilient tool to detect third-party libraries
on those apps and discards the apps without ad libraries. Third,
ClickScanner needs to remove views that do not contain ad con-
tents to avoid unnecessary analysis. Since there are no explicit
labels that would allow us to easily distinguish ad views from other
views, in this study, ClickScanner uses the relevant ad features,
such as string, type, and placement features, to determine ad views,
followed by prior research [14]. In summary, only the apps that
successfully pass the above three analysis steps would undergo the
static analysis of ClickScanner.

4.1.2  Extracting Click Event Properties through Static Analysis. Af-
ter ClickScanner selects those click events targeted at ad views,
ClickScanner performs static analysis on them and extracts their
properties and trigger conditions. As mentioned in Section 2.2,
attackers typically use the MotionEvent.obtain function to cre-
ate a new MotionEvent object by obtaining the properties of a
click event as its parameters, and then attackers deliver it to the
dispatchTouchEvent function to perform the humanoid attack.
Therefore, for a given app (APK), ClickScanner first utilizes the
static analysis tools Soot [45] and Flowdroid [6] to build inter-
procedural control flow graphs (ICFGs), Def-Use (DU), and Use-Def
(UD) chains of it. However, separately deploying the above ICFG,
UD, and DU chains cannot represent the parameters assignment
process of the MotionEvent.obtain function and the trigger con-
dition formation process of the dispatchTouchEvent. Therefore,
to overcome these issues, we propose a novel data dependency
graph (DDG) to show the overall properties and trigger conditions
of the click event for further feature extraction, and the details of
DDG building are introduced as follows.

The initialization of DDG. We propose a novel data dependency
graph (DDG) to show the overall properties and trigger conditions

Algorithm 1 DDGTool

Input: ICFG; UD chain; DU chain; root;
Output: DDG;

1: DDG = emptyset

2: DDG.setRoot(root)

3: while DDG is changing do

4 for every i in DDG do

5 if iis const then
6: const_def = getDefSite(i, UDChain)
7 DDG += New DDGNode(const_val)
8: else if i is func then
9: if !isSysAPI(i) then
10: func_def = getDefSite(ICFGs, i)
11: DDG += getSubGraph(func_def)
12: else
13: DDG += New DDGNode(i)
14: end if
15: else if iis var then
16: DDG += New DDGNode(i)
17: DDG += getPre(ICFG, UD&DUChain, i)
18: else
19: para_caller = getCaller(ICFGs, i)
20: DDG += getPara(para_caller)
21: end if
22: end for

23: end while
24: return DDG

of the click event based on ICFGs, DU, and UD chains for further
feature extraction. DDG can include all the data that make up prop-
erties and trigger conditions of the click event in a graph, where
each node represents the statement, and each edge represents the
dependency relation between the two statements. We can find out
what data have been used to form the properties and trigger condi-
tions of the click event and what the relationship is between them
by the DDG. After obtaining the ICFG, DU chains, and UD chains,
we develop backward program slicing in Algorithm 1 to build the
DDG. Fig. 6 shows a DDG generated by ClickScanner correspond-
ing to Fig. 4. The red arrows are the routes of backward program
slicing and nodes are the statements. The inputs of the algorithm
are the ICFG, DU and UD chains, and the root which are those
items in the condition expression of dispatchTouchEvent and the
parameters of MotionEvent.obtain as mentioned in Section 3. In
particular, the roots of this DDG in Fig. 6 are “x coordinate” node
and “y coordinate” node. The algorithm starts with the empty set
data dependency graph (DDG) and aims at finding the assignment
process of those items and parameters. It is observed that both the
values of the items in the condition expressions and the parame-
ters of MotionEvent.obtain representing the properties of a click
event are usually composed of four types of data. They are constants,
variables, return value of a method and parameters of the function
which calls the dispatchTouchEvent. One or more of these four
types of data are combined through arithmetic operations to form
the final result.

The expansion of DDG. For each item in the DDG generation, as
shown at line 3 to line 22 in Algorithm 1, ClickScanner handles



App Dissecting Module

oL

& «  AxisAPI
o *  ViewSizeAPI
Build ICFGs & «  Const
Def-Use and *  RandAxis
Use-def chains * DDGSize
* RandCondition
*  SysAPI

W -
“> De;mpile

>

Feature Extraction Module

Feature Vector 1 i (Appval) e
Feature Vector 2 “’ "' -
Feature Vector 3 = %

Fraud Decision Module

Fraud Predictio

v

Fraud Decision

Figure 5: The workflow of ClickScanner.

$r0 := @adview; (ro)
P
rl

$r3 = new Random; Cr3)

$rl = $r0.<adview: android.View 0>; invoke $r3.<Random: void <init>()>();

i2 = $r1.<android.View: int getWidth()>(; (i2 )
$i2 = $rl.<android.View: int getWidth()>(); =
i2 = $r3.<R: el Int(i i2); I2_
— $i2 = $r3.<Random: int nextInt(int)>($i2); P
$r3 = new Random; _r3 <8tz (float) $i2; ‘ ﬂr‘

invoke $r3.<Random: void <init>()>(); (x coordinate)
2

$i2 = $rl.<android.View: int getHeight()>();' J pra = <android.MotionEvent obtain(...,float,float,...)>(..., $f0 $f1, ..);

2
i :
$i2 = $r3.<Random: int nextInt(int)>($i2); | % J $r5 = <android.MotionEvent obtain(...,float,float,...)>(..., $f0; $f1, ...);
fl

81 = (float) $i2; (y coordinate)

|

Figure 6: A simplified illustrative figure of the data depen-
dence graph (DDG) of the motivating example constructed
by ClickScanner for the code in Fig. 4. The red arrows are
the routes of backward program slicing,.

the above four types of data by repeating the following steps. 1)
If it is a constant, ClickScanner will find the definition site of it
by UD chain and directly add it to the DDG. 2) If it is a return
value of a certain system method that usually has a fixed meaning,
ClickScanner directly adds the return values of it to the DDG.
However, if it is a return value of the developer-defined method
without fixed meaning, ClickScanner finds the method’s definition
site and identifies what processing has been performed in its method
body. Then, ClickScanner converts all the nodes in their method
bodies into subgraphs of the DDG. 3) If it is a variable that is
usually formed by different types of data, to figure out the variable’s
meaning, ClickScanner needs to find the variable’s assignment
process. Therefore, ClickScanner finds its predecessors from the
definition site of the variable based on the ICFG and UD chains and
adds it to the DDG. 4) If it is a parameter of the method in which the
dispatchTouchEvent is called, ClickScanner first gets the caller
of the method based on ICFG and then finds the parameter values
of the method.

As shown in Fig. 6, ClickScanner successfully finds exactly
where the humanoid attack occurs in codes. The process of gener-
ating the DDG of the trigger condition is similar to the description
above, so we omit it due to space limitations.

4.2 Feature Extraction Module

Once a DDG is built, ClickScanner can find all necessary features
in it for verifying whether the humanoid attack takes place in the
given app. Android systems typically have 7 different constructors
for the MotionEvent.obtain and all of them have the following

common parameters: eventTime, actionType, axisValue and metaS-
tate, among which we choose the axis values (i.e., touch position
(AXIS_X, AXIS_Y)) for further study. Because the benign app re-
ceives the MotionEvent object from the system, sometimes it needs
to record the coordinates of the click, and then dispatches it. How-
ever, for fraudulent apps (i.e., Fig. 4 at lines 5 and 6), they first
obtain the height and width of the ad view and construct the fake
click’s coordinates that follow a random distribution, which mimics
the benign app behaviors. As a result, even if the traditional click
fraud detection approaches can obtain click traffic, they cannot
distinguish between a humanoid attack and a normal click since
properties such as the coordinates are similar.

This shows that instead of analyzing the pattern of generated
coordinates, the humanoid attack can be identified by checking
the process of coordinate generating. For instance, the “illegal oper-
ations” including obtaining height/width and exploiting Random()
method in Fig. 4 may be used to detect its fraudulent behaviors.
In a real-world scenario, we further characterize the axis into five
features:

(1) The number of APIs for getting the actual click coordi-
nates generated by users (AxisAPI). As shown in Fig. 4, the
fraudulent app involves no APIs to get the coordinates of real users’
click (e.g., getX() and getY()). Instead, it constructs the coordinates
by itself. Intuitively, the existence of APIs, which are used to get
the actual click coordinates generated by users, can be indicative of
whether the app is a fraudulent application. When an app contains
a MotionEvent whose coordinate parameters do not involve the sys-
tem APIs above, we take it as a potentially fraudulent application.
As shown in Table 1, the F-score of AxisAPIis 0.81 when identifying
humanoid attack instances over our ground truth dataset (SEED
APPS).

(2) The number of APIs for getting the size of ad view (View-
SizeAPI). Many fraudulent apps obtain the size of the ad view in
order to place the coordinates of the fake click inside the ad view.
Although some benign apps will also get the view size, the pro-
portion is much lower than that in fraudulent apps based on the
observation of benign samples in our dataset.

(3) The number of the constants (Const). Since some fraudulent
apps try to click on the area around a fixed point in the ad view,
such as the download and install button, they will obtain the size
of a view and calculate it with a constant to get a specific point
coordinate. The F-score for this feature is shown in Table 1.



Table 1: F-score of features

AxisAPI ViewSizeAPI Const RandAxis
0.81 0.79 0.83 0.62
DDGSize RandCondition SysAPI
0.82 0.54 0.61

! F-score is calculated based on classification with each single feature.

(4) The number of API for getting random numbers (Ran-
dAxis). To better mimic human clicks, the fraudulent apps often use
APIs that generate random numbers (e.g., random. nextGaussian)
when constructing click coordinates or the time distribution of
clicks, as shown in the motivating example. In doing so, attackers
can disguise the traffic generated by fake clicks as traffic generated
by real people and make the fake clicks unpredictable to evade the
dynamic analysis. Therefore, we use this as an indicator to identify
fraudulent apps. The F-score for this feature, as measured on our
ground-truth set, is illustrated in Table 1.

(5) Size of the DDG (DDGSize). Our manually labeled dataset
shows that fraudulent apps tend to process the data several times
before passing it to the MotionEvent.obtain as its coordinate
parameters, while benign apps tend to directly take the return
value of the methods like getX as the coordinate parameters. The
larger size of the DDG indicates that the data have been processed
more times before being passed to the MotionEvent.obtain. The
F-score for this feature is shown in Table 1.

Meanwhile, the attackers also tend to change their behaviors to
evade detection, which can be detected by analyzing the trigger
conditions of the click events. The unique software and hardware
resources on mobile devices enable fraudulent apps to cover their
behaviors with a wider spectrum of triggers, that is, conditions
under which the hidden operations will be performed [33]. For
example, in Fig. 4 at line 4, the fraudulent app tries to fool detectors
by randomizing the trigger condition of the click event, which is
like a human’s click timing pattern and difficult to be triggered by
dynamic analysis. Therefore, we also focus on the trigger condition
of click events and characterize it into two features:

(6) Random Numbers in Condition Expression (RandCondi-
tion). Many fraudulent apps tend to randomize the trigger con-
ditions and trigger frequency of humanoid attacks to simulate
legitimate clicks, which makes the fake clicks indistinguishable and
undetectable. Additionally, dynamic analysis requires much time
to interact with these apps so it is difficult to cover all paths of
the humanoid attack. Hence, we regard the invocations of func-
tions in the process formation of the trigger conditions, which can
generate random numbers as a feature to identify the humanoid
attack.

(7) System Call in Condition Expression (SysAPI). Some hid-
den sensitive instances with a similar purpose to the humanoid
attack have been discussed [15, 33]. They are subject to some sys-
tem properties or environment parameters (i.e., OS or hardware
traces of a mobile device). They can only be exposed to an app
through system interfaces. Hence, we can infer that the condition
of the humanoid attack is also expected to involve, directly or
indirectly, one or more API calls for interacting with the OS, and
we regard them as another feature. The F-score for this feature is
0.61 as illustrated in Table 1.

Although all the features above can contribute to the detection of
humanoid attacks to a certain degree, certain kinds of humanoid
attacks may involve several features and a single feature may
cause high false positives and negatives. Therefore, none of those
features can work alone. [51] Hence, our key idea is to use some of
these features collectively. We finally combine all 7 features into the
same feature space according to our experiment result, which is il-
lustrated in Section 5.1. Furthermore, we apply normalization to the
features before feature vectors formalization because the compo-
nents of the features are different. To determine the weight of each
feature, the entropy weight method is deployed by ClickScanner.

4.3 Fraud Decision Module

Existing click fraud detection models either need to specify many
rules for classification [8, 14, 28, 32], which leads to high false
negatives due to the incomplete and statistically unrepresentative
rules, or require a large number of malicious samples as the training
set [11], which is unrealistic due to the lack of labeled datasets. More-
over, since these existing approaches rely heavily on the knowledge
of certain rules and training set labels, they may fail to handle sub-
sequent variant click fraud. To overcome these limitations, we build
an effective classifier based on Variational AutoEncoders (VAEs)
with limited knowledge about fraudulent examples. This can reduce
the researchers’ dependence on fraudulent data sets and is more
robust to variants of such newly discovered attacks.

In a nutshell, a VAE is an autoencoder whose encoding distri-
bution is regularized during training in order to ensure that its
latent space has good properties so that it can be used to generate
new data that is similar to the inputs. We use benign examples to
train our classifier and determine whether an input is benign or not
according to the reconstruction error between the input and output.
Specifically, the encoder is a neural network. Its input is x, which is
the feature vectors generated by the ClickScanner. The encoder’s
output is a hidden representation z, which is the aforementioned
latent space. The encoder will perform dimensionality reduction
on the input x because the encoder must learn an efficient compres-
sion of the data into this lower-dimensional space. The decoder is
another neural network. Its input is the representation z, and its
outputs are the parameters to the probability distribution of the
data, and has weights and biases ¢. Some information may be lost
due to the dimensionality reduction of the encoder, and some new
data are generated due to the random sampling of the decoder. We
can use the reconstruction error to measure the difference between
the input and output.

In the training phase of our classifier, it is trained with benign
examples’ feature vectors in advance so that its encoder will be
able to learn the representations of benign examples. To do this, we
randomly selected pristine 10,000 benign apps from [1] for train-
ing. We train the VAE with feature vectors of those APKs that are
not marked by all the engines from VirusTotal [46], a website that
aggregates many antivirus products and online scan engines to
check for viruses. Although, as mentioned in [52], the detection
results of VirusTotal are not always reliable, because we use many
benign samples for training, a relatively small number of fraudulent
samples that are not detected by VirusTotal will not affect the distri-
bution of the latent space. Once the classifier has been well trained,



Table 2: Performance of the classifier

Recall F-score
48/50=96% 0.960

Precision
48/50 = 96%

SEED APPS

its encoder will learn benign examples’ representations in the latent
space. After training, we feed a tested app’s feature vector, which
is extracted from the newly formed DDG in the Extractor, to the
VAE and output the reconstructed feature vector containing the
information of the latent space in the training phase. Our classifier
will consider its input to be fraudulent only when its reconstruc-
tion error exceeds a certain threshold ¢. It is similar to building a
borderline that encompasses all benign examples so that we only
need to check whether an input is in the borderline by computing
the reconstruction error.

To the best of our knowledge, our model is the first Android
humanoid attack detector with limited knowledge about fraudu-
lent examples. Due to the lack of malicious examples in reality, this
makes ClickScanner practical to deploy.

5 MEASUREMENTS

As mentioned in Section 3.1, due to the absence of existing bench-
marks in this research area, we manually label 100 apps containing
50 fraudulent examples and 50 benign examples as our SEED APPS for
fine-tuning and accuracy tests. Then we utilize ClickScanner to
conduct the first large-scale measurement of the humanoid attack
in the current app market based on 120,000 apps (10,000 top-rated
apps from Google Play, 10,000 top-rated apps from Huawei App-
Gallery, and 100,000 randomly selected apps from Google Play),
and elaborate on several important findings. All experiments are
performed on a Windows 10 Desktop, equipped with 8 CPU Cores
at 3.6GHz and 32 GB of RAM.

5.1 Evaluation of ClickScanner

5.1.1  Fine-tuning of ClickScanner. Before utilizing ClickScanner
to conduct large-scale analysis, it is necessary to fine-tune the
ClickScanner’s parameters on SEED APPs to achieve the best per-
formance. As mentioned in Section 4.2, there are seven different
features for ClickScanner. To determine the best feature combi-
nations, we traverse all combinations from 2 to 7 features and
show their best performances with the ROC (Receiver Operat-
ing Characteristic) curves in Fig. 7. It is observed that the per-
formance is improved by adding new features. When there are
5 features selected (AxisAPI, ViewSizeAPI, RandAxis, DDGSize,
RandCondition), adding more features only leads to a slight im-
provement in accuracy, which demonstrates that our feature vector
can adequately describe the app behaviors and help classifiers to
identify fraudulent apps. We also evaluate ClickScanner under
different thresholds ¢ for threshold selection. It is observed when t
is set to 2.04, ClickScanner achieves the best performance. In the
following measurement study, to achieve the best accuracy, t is set
to 2.04 and all 7 features are selected by ClickScanner.

5.1.2  Effectiveness of ClickScanner. Table 2 shows when choos-
ing the parameters above, 48 apps out of 50 fraud apps in the SEED
APPs are successfully recognized by ClickScanner. ClickScanner
achieves the F-score of 0.960, showing its effectiveness in detecting

humanoid attacks. There are 2 false positive and 2 false nega-
tive cases and we discuss the root causes in Section 7. Note that
since SEED APPs are independently extracted from manual check
(see Section 3.1), ClickScanner achieves high average values of
precision and F1-score with limited knowledge about malicious
examples, and this implies its effectiveness. The effectiveness is
also substantiated with the high precision of detection in the wild
(see Section 5.2.2).

5.1.3 Comparison with the State-of-the-Art Ad Fraud Detection Tool.
Currently, the most up-to-date fraud detection tool is FraudDetec-
tive implemented by Kim et al. [20], which computes a full stack
trace from an observed ad fraud activity to a user event by connect-
ing fragmented multiple stack traces. It is an effective tool which
could detect three types of ad fraud. However, like other tools that
use dynamic analysis, it incurs a large time overhead to execute
apps and interact with them. Additionally, since some fraudulent
apps will randomly trigger the humanoid attack, FraudDetective
may not be able to cover all the program paths, and thus it is difficult
for FraudDetective to trigger all humanoid attacks discovered in
our study.

Since FraudDetective and their datasets are not publicly avail-
able, we make our best effort to craft the datasets of ClickScanner
as similar as possible to the ones used by FraudDetective, and we
acknowledge that data duplication may exist between ClickScan-
ner and FraudDetective. The two datasets were obtained around
the same time with a similar data collection methodology. In our
BASIC DATASET, we collected 10,000 top-rated apps in total from
each category from Google Play updated in July 2020, and we also
conducted a longitudinal study, collecting fraudulent apps with
different versions published from August 2017 to December 2020.
The researchers of FraudDetective collected the top 10,024 apps
from each of the Google Play categories from April 2019 to Sep-
tember 2020 and randomly sampled additional 38,148 apps from
APK mirror sites. We believe that these two datasets are likely to
have overlapped apps. However, FraudDetective may fail to trig-
ger humanoid attacks discovered in this paper since it is based
on dynamic analysis alone. In their evaluation part, FraudDetec-
tive did not detect any app that generates a forged click among
the 48,172 apps crawled from the Google Play Store. By contrast,
ClickScanner successfully identified 157 fraudulent apps among
20,000 apps in the BASIC DATASET as shown in Section 5.2.1. In
summary, ClickScanner outperforms existing detection tools in
the aspect of detecting humanoid attacks, and we leave the com-
parison on the same large-scale dataset for future work.

5.2 Detecting Humanoid Attacks in App
Markets

We first build a BAsIC DATASET with 20,000 top-rated apps and show
the detection results of C1ickScanner below. We show more details
of the fraudulent apps we have detected in Appendix A.

5.2.1 The Collection of the BAsic DATASET. The BASIC DATASET
contains 20,000 apps, in which every 10,000 app is top-rated and
sorted by downloading numbers in each category from Google Play
and Huawei AppGallery updated in July 2020. We choose these apps
because, in app markets, the few most popular apps contribute to a
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tures.

high majority of app downloads. Therefore, by analyzing the Basic
DATASET, we can focus on humanoid attack cases with the highest
influence [36]. Additionally, Google Play and Huawei AppGallery
are the biggest app markets in the U.S. and China respectively,
which ensure that our study is representative in scope. In this study,
if not otherwise specified, all analysis is done using the BASIC DATASET.

5.22  The Humanoid Attack Cases Detected by ClickScanner. Af-
ter conducting analysis of 20,000 apps, ClickScanner identifies
170 suspicious click activities from 166 suspicious apps. Then, by
manually checking those apps’ decompiled codes, 74 humanoid
attack activities in 63 apps and 140 humanoid attack activities in
94 apps from Google Play and Huawei AppGallery are found respec-
tively. The precision rate of 94.6% over 20,000 apps demonstrates
the effectiveness of our classifier and fine-tuned parameters. The
precision rate here also indicates the commendable generalization
ability of ClickScanner. As a consequence of over 1.2 billion the
total download number of such fraudulent apps in the market, the
humanoid attack is very likely to have deceived both advertisers
and users with fake ad clicks and cost advertisers huge losses. We
attempted to perceive the status quo (until March 29, 2021) of 63
fraudulent apps and 94 fraudulent apps in the BASIC DATASET we
detected from Google Play and Huawei, respectively. We found
that 13 of 63 in Google and 26 of 94 in Huawei have been removed,
but the remaining apps are still publicly available. We are also in
the process of liaising with relevant app vendors for responsible
disclosure. And Google notified us that they have received our
report.

5.2.3 The Distribution of Apps Affected by Humanoid Attacks. To
quantify the damage of humanoid attacks in the real world, it is
important to know the category distributions of identified malicious
apps. Thus, for each fraudulent app, we extract its category (e.g.,
books, education, weather) labeled by app markets and illustrate
the statistical results in Fig. 8. It is observed there is a significant
difference between the categories of fraudulent apps from Google
Play and Huawei AppGallery. For instance, among 25 categories,
fraudulent apps from both app markets exist in only 8 categories.

Since the target users in Google Play and Huawei AppGallery
are different (i.e., the former mainly targeting U.S. and Europe, and
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Figure 8: The number of fraudulent apps group by different
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Figure 9: The performance of the VirusTotal in vetting fraud-
ulent apps identified by ClickScanner.

the latter mainly targeting China), the difference of marketing is
perhaps caused by the interest/cultural differences of users, and the
users’ interests in mobile ads [21]. For instance, the fraudulent apps
detected in Huawei AppGallery are concentrated in “Education”,

“Books” and “Shopping” because China has a prosperous online

shopping industry and a cultural emphasis on education, while in
Google Play, the detected apps are concentrated in “News”, “Mag-
azines” due to the diversity of media in society. It is also worth
noting that there are apps from the “Tools” category marked by
ClickScanner in both markets. This may be because it is easier to
obtain system permissions to hide fraudulent activities for these
types of apps. In summary, these discoveries indicate that applica-
tion markets in different regions need to focus on vetting different
types of applications.

5.2.4 Comparison with Existing Detection Engines. To compare
the performance between ClickScanner and existing click fraud
detection schemes, we use VirusTotal [46], a detection platform
that integrates 60 anti-malware engines including Kaspersky [24]
and McAfee [29], to double check the ad fraud apps identified by
ClickScanner. Note that, as mentioned in [35, 52], the performance
of VirusTotal is not stable due to its design flaw. Therefore, to elim-
inate the detection error of VirusTotal, we uploaded those apps
in July 2020 and January 2021 respectively to ensure the accuracy
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of the detection results, and the results are the same for both app
sets. Although VirusTotal is not tailored for identifying humanoid
attacks, we use it as a baseline since it provides basic functionality
to spot some kinds of ad frauds as “adware”. The results of Virus-
Total and ClickScanner are shown in Fig. 9. It is observed that 58
and 57 apps in Google Play and Huawei AppGallery successfully
bypass all detection engines of VirusTotal, and only 5 apps can be
detected by more than 7 engines. These results demonstrate that
our ClickScanner outperforms existing detection engines in terms
of click fraud detection.

5.3 Humanoid Attacks in SDKs

By conducting a longitudinal study on the aforementioned detected
apps on Google Play.? We note that fraudulent SDK injection has
played an increasingly important role in humanoid attacks. We
will elaborate upon the analysis below.

5.3.1 Fraudulent SDKs in Humanoid Attacks. For the 157 apps de-
tected by ClickScanner in BASIC DATASET, we manually analyze
the reasons leading to humanoid attacks. It is observed that the
humanoid attack can be divided into non-SDK-based cases and
SDK-based cases. In the former, the attackers directly inject the
fraudulent click codes into the apps’ local codes. However, in the
latter case, the fake clicks are generated by the deployed third-
party ad SDKs. As shown in Table 3, 67% and 95.2% fraudulent apps
from Huawei AppGallery and Google Play belong to SDK-based
cases, meaning that SDK based attack is the dominant manner of
humanoid attacks in our dataset.

For the 63 fraudulent apps in Google Play, we collect all their ver-
sions published from August 2017 to December 2020 and determine
whether the attack is caused by the SDK. As shown in Fig. 10, it is
observed that the proportion of ad SDK-based attack (i.e., injecting
fraudulent codes into the third-party ad SDKs) has increased from
14% in June 2018 to 83% in August 2020, which means the SDK
based attack is now a dominant attack approach. Besides, the most
popular fraudulent SDKs in Google Play are com.mo***, com.ku***,
and com.ar***. We observe the open source code on the Github or
analyze the advertising SDK downloaded from official channels and

3Since Huawei AppGallery does not provide download channels for historical versions,
we only studied those apps on Google Play, which were downloaded from apkpure [5].
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Figure 11: SDKs across app categories. The color encodes the
number of apps involving fraudulent SDKs.

emphasize that all 7 SDKs labeled by ClickScanner were created
fraudulently by SDK developers before publishing. The remaining
4 SDKs are not publicly available.

5.3.2  New Findings on SDK com.mo**”. Another interesting finding
from Fig. 10 is that the attacks caused by SDK com.mo*** suffer an
unusual decrease after August 2020.* We analyze the apps deploying
this SDK and find that 28 of the 39 apps have removed the SDK after
August 2020. Then, by searching the commit record of it on GitHub,
we also find that the humanoid attack code was removed after
the version published in November 2020. Inspired by a report from
Forbes News in August 2020 revealing a malicious ad SDK named
Mintegral [22], which was used by 1,200+ apps and was caught for
performing click frauds since July 2019, we conjecture that the app
developers may have noticed this issue and subsequently removed
the ad SDK from their apps, or Google enforced a new policy against
this SDK to disallow apps using it to be published in the Google
Play Store.

5.3.3 The Distribution of Fraudulent SDKs. We also analyze the
distribution of fraudulent SDKs of all 157 apps according to their
categories. As shown in Fig. 11, the fraudulent apps existing in
nearly half of the categories (19/45) are affected by 11 SDKs in total.
This shows that the use of SDK to commit humanoid attack is not
an isolated case against a certain category of apps, but a common
method deserving attention. Furthermore, it is observed that the
com.mo*** SDK and com.iB*** SDK have infected a large proportion
of applications. Therefore, to effectively thwart humanoid attacks,
it is vital to put efforts on vetting SDKs as well as the apps.

5.4 Analysis on the EXTENSIVE DATASET

Extensive dataset. The aforementioned analysis is all based on the
BASIC DATASET. To present a comprehensive overview of humanoid
attacks, we continue to randomly collect 100,000 apps from the
dataset published in [1], downloaded from Google Play updated on
January 1, 2021, which are not in the BASIC DATASET.’

Measurement findings. From 100,000 randomly selected apps,
ClickScanner identifies 584 apps as fraudulent. Given that there
is no ground truth for the identification of click fraud in our Ba-
SIC DATASET, each app must be inspected to confirm the existence

4We give more analysis of com.mo*** in Section 6.3.
>We did not collect apps from Huawei AppGalley since there are not as many apks
available as on Google Play.



Table 3: Fraudulent app distribution by SDKs on Google Play
and Huawei AppGallery

Detection result

App market Total downloads
SDK # of apps Ratio
Huawei AppGallery 10,000 yes 72 67.0%
no 22 33.0%
Google Play 10,000 yes 59 95.2%
no 4 4.8%
Google Play 100000 5% 15.3%
no 494 84.7%

of click fraud. However, inspecting more than 500 apps is time-
consuming, so we instead chose to randomly sample 60 apps (>10%)
from the EXTENSIVE DATASET. After inspecting each app and iden-
tifying the click fraud actions, we show 100% precision over the
randomly sampled dataset and this suggests the effectiveness of
ClickScanner. With more time and effort, manual check of a sam-
ple size greater than 200 apps (>30%) would give a more pronounced
precision rate. In view of the current best effort in manual verifica-
tion, we highlight that currently there is no benchmark dataset pub-
licly available for any accuracy-comparison of humanoid attack
identification approaches. Table 3 shows that the proportion of SDK
based cases among the EXTENSIVE DATASET is only 15.3% which is
much less than that in the BASIC DATASET (i.e., 83.4%). The possible
reasons are as follows: 1) fraudulent SDKs are more likely to infect
popular apps to commit more humanoid attacks; 2) developers
of popular apps pay more attention to app security compliance,
and generally will not add fraudulent codes to apps themselves.
Therefore, we reveal that the humanoid attack has different prop-
erties depending upon app popularity, which will require different
approaches for vetting.

5.5 Time Overhead

To evaluate the time overhead of ClickScanner, we first divide
120,000 apps from both the Basic and EXTENSIVE datasets into five
categories with the apk sizes of 0 ~ 10 MB, 10 ~ 50 MB, 50 ~ 100
MB, 100 ~ 200 MB and above 200 MB respectively. Then we record
the average running time of ClickScanner on each category. Note
that the timeout of ClickScanner is set to 300 seconds, and only
742 out of 120,000 apps (0.62%) do not terminate within 300 seconds.

We further compare the time overhead of ClickScanner with
other previous tools (e.g., FraudDetective [20], FraudDroid [14],
MAdFraud [11], DECAF [28], AdSherlock [8], and Clicktok [32]).
Table 4 lists the average time overhead of ClickScanner and other
tools.

FraudDetective tests each app for five minutes. FraudDroid takes
at most 216 seconds to analyze an app. MAdFraud needs 120 seconds
to run on average. The mean and median time for analyzing an app
using DECAF is 11.8 minutes and 11.25 minutes respectively. Ad-
Sherlock executes each app in one emulator instance twice, which
costs 10 minutes to extract ad fraud traffic patterns offline. Clicktok
does not list its runtime performance but it also needs to execute

each app for a chosen duration of time to interact with apps us-
ing the Monkeyrunner tool [18]. It is observed that the average
ClickScanner time cost for detecting humanoid attacks is about
18.4 seconds per app.

It is worth noting that even in the best case (i.e., 120 seconds
in MAdFraud), the time overhead is nearly 6.5 times as much as
ClickScanner. These results demonstrate that ClickScanner sig-
nificantly outperforms existing tools in terms of the time overhead
and that it is practical to deploy ClickScanner in the real world.
Additionally, it is observed that when changing apk size, the detec-
tion time correlated to apk size is relatively stable.

6 CASE STUDY

In this section, we closely analyze the fraud apps discovered after
vetting over one hundred thousand apps. We present four represen-
tative humanoid attack cases and explain newly obtained insights
into how attackers commit mobile click fraud.

6.1 Case 1. Humanoid Attacks after User’s
Legitimate Actions

To fool the traditional detectors, some humanoid attacks will fol-
low the user’s legitimate actions. For instance, one fraudulent app,
named com.co™ N g g communication and social app
with a total of over 570 million downloads across all app markets
searched on [23] and ClickScanner successfully reveals its pro-
cess of generating humanoid attacks in Fig. 12. It first displays
the advertisement to the users, and when the users click on the
advertisement, it generates a set of random numbers in the trigger
condition of fake clicks so that the humanoid attack is triggered
randomly. The same method is also used in the method of randomly
generating click coordinates for humanoid attacks. The potential
threats with this app are as follows. (i) Click frauds as such are
difficult to detect with traditional detection methods, because their
traffic patterns and click patterns vary with different users and
are highly similar to real human clicks. Therefore, the traditional
method of identifying click fraud that relies on the difference be-
tween patterns of click fraud and normal clicks is ineffective. (ii)
Attackers will even defraud advertisers for more advertising costs
on the grounds that a considerable part of their users are interested
in the advertisements they distribute and click twice. (iii) We also
find that the app is not alone in implementing fraudulent behaviors.
Four other apps produced by the same company are manifested
to have similar click fraud codes. Their total downloads reached
over 658M across all app markets, therefore they have caused huge
losses for advertisers.

6.2 Case 2. Humanoid Attack that Can
Adaptively Avoid Detection

Some apps predefine fake click’s execution logic in their code and
receive the click’s configuration from remote servers, which can be
changed at any time according to the situation. The occurrence of
fake clicks will be adaptively controlled locally to avoid detection.
As shown in Fig. 13, com.m********* is a photography app with
over 9.5 billion downloads in all app markets searched on [23] and
over 50 million installations since the time it was made available in

Google Play. ClickScanner has uncovered it conducting humanoid



Table 4: Runtime overheads evaluation of ClickScanner with other tools.

. . ClickScanner
Tools FraudDetective [20] | FraudDroid [14] | MAdFraud [11] | DECAF [28] | AdSherlock [8] 0920(MB) 20-50(MB) 50-100(MB) 100-200(MB) 200+(MB) avg
avg_time(s) 300 216 120 675 600 16.37 20.82 16.11 16.79 22.02 18.42
static final void onClick(AdWebView){ 6.3 Case 3. Humanoid Attack through Infected
1. if(randNum > ©f & randNum > new Random().nextFloat()) { Ad SDKS

2. performRandomClick (AdWwebView, . . .);— - -
} Generate fake click with random axis values

after meeting the random condition

private static void performRandomClick(View AdWebView, ...) { «
1.float randWwidth = new Random.nextFloat() * AdWebView.getWidth();
2.float randHeight= new Random.nextFloat() * AdWebView.getHeight();
3.MotionEvent v9 = MotionEvent.obtain(..., randx, randy,...);
4.AdWebView.dispatchTouchEvent(v9);

Figure 12: The code snippet from case 1in the case study. The
timing patterns of click fraud vary according to user actions.

If the number of fake clicks does not exceed the max_clk sent by the server, the
ad will be loaded after a random delay and humanoid attack will be implemented

]
public void loadAD (url) {4—'
this.a.loadUrl (url);
++ clk_count;

new Handler () .postDelayed (- {
if (clk_count < max_clk) {
public void run() {

public boolean shouldOverrideUrlLoading
(WebView AdView, String ADConfig) {

} parseConfig (ADConfig) ; — -
}, (new Random() .nextInt(6)*1000); i | } Start parsing the configuration information of
fake..click issued by the SeIVer. ...,
private void parseConfig(String ADConfig) {
String[] clkConfig = ADConfig.split("//");
this.adClk (Long.parselong(clkConfig [0]),Integer.parselnt(clkConfig [1]), €+
Float.parseFloat (clkConfig[2]) ,Float.parseFloat (clkConfig[3])d=—

b

public static void adClk (-, clk_type, clkConfig x, clkConfig y, =) {
MotionEvent v9=MotionEvent.obtain (-*clk_type, clkConfig x, clkConfig y,*);
adView. t(v9); <«

""" Implement humanoid attack based on the parsed click coordinates and click type
}

Figure 13: The code snippet from the case 2 in the case study.
The configuration and commands of humanoid attack come
from the server, and the occurrence of fake click will be
adaptively controlled locally to avoid detection.

attacks against ad agencies. It first loads a configuration URL start-
ing with "https://I"*.u****.com:8***/1**/s?" and parses out data such
as "ctr", "cvr", "max_clk" and "max_imp" in the returned JSON data
structure as fake click configuration. Then it will count every time
a fake click is triggered. When the number of fake clicks is greater
than the value of the maximum number of clicks (max_clk) sent by
the remote server, it will stop conducting the humanoid attack.
If the number of fake clicks is smaller than "max_clk", it will get
the click properties, such as duration, action (up or down), and
coordinates from the JSON data structure returned from the config-
uration URL to construct the MotinoEvent object and implement the
humanoid attack. In doing so, the app can automatically execute
a fake click on a random point in the ad view without the user
actually clicking on the phone screen. The traffic of this fake click
is identical to what would be generated by a real person, and hence
the app adaptively avoids detection.

The two apps above involve only one developer (although the
humanoid attack code snippets involved in case 1 exist in multiple
apps developed by the same company). As we mentioned in the
Section 5, fraudulent developers now have shifted from directly
developing app applications to developing SDKs, which can make
their click fraud code affect more apps. "com.mo™*" is an adver-
tising SDK with humanoid attack codes involved in 43 apps out
of 120,000 apps. It will override the onClick() method when ini-
tializing the ad view. This ad view will automatically click itself
again when it is clicked by a user, which causes the ad view to be
clicked twice in the advertiser’s view. This fraudulent SDK has a
greater impact than the previous two because all apps that install
this SDK will participate in fraudulent activities intentionally or
unintentionally. The total number of app installations affected by
this SDK reaches 270 million since they were made available on
Google Play. It is worth noting that we found the source code of this
SDK on the GitHub, and the developer deleted this code by himself
on November 5, 2020. We guess this may be related to Google’s
increasingly strict anti-ad-fraud measures.

6.4 Case 4. Humanoid Attack by Disguising as
an Auto-play Video Assist Function

Some fraudulent activities are not only limited to clicking on static
ads, but also pretend to be an accessibility service to help users to
automatically play videos at the code level, but its real purpose is to
click on the ad video. "com.iB***" SDK is a typical representative of
this kind of humanoid attack. It initializes a VideoWebView class
in the VideoAdActivity function, and predefines an onReadyPlay
callback function in this class. In this callback function, it will
check whether the ad video is playing, and if it is not playing, it will
automatically click the ad video. The "com.iB***" SDK forces people
who want to leave because they are not interested in the ad video to
watch the video to increase their ad revenue. The download number
of the apps affected by this SDK is over 476 million across all app
markets searched on [23].

7 DISCUSSION

Scalability of ClickScanner. In this work, we proposed a new
time-saving and efficient framework for click fraud detection. To
foster a broader impact, we implemented an efficient backward
program slicing framework in ClickScanner which can detect
the assignment process of any variable or parameters of any API.
Hence, our framework can be easily extended by researchers for
targeted and efficient security vetting of modern Android apps.®
In the future, we will also enhance ClickScanner to search over
native code, and also extend it to other problems.

®Publicly available at https://github.com/Firework471/ClickScanner.


https://github.com/Firework471/ClickScanner

Analysis of misclassification cases. By manual analysis, the rea-
sons for misclassifications are as follows: For the 11 apps in the
SEED APPs that are misclassified by ClickScanner: 1) False posi-
tives: some apps simulate a human click to obtain the focus of the
window. Although Android provides a standardized API to achieve
this function, obtaining focus through this inappropriate method
is rare. 2) False negatives: some views, although they include ad
contents, are not regarded as ad views by ClickScanner. For the
9 false positives in the BASIC DATASET: 4 of them simulate a hu-
man click to obtain the focus of the window; 3 of them simulate a
human click to automatically play a non-ad video; 2 of them are
game apps, which achieve the expected game effect by shielding
the original user’s click event in the game webview and generating
new click events. To solve these issues, expending more effort on
checking whether the click event target is the input box or non-ad
video player in the webview, or improving the accuracy of ad view
detection are both feasible solutions.

Limitation 1: Fraud codes and instructions issued by remote
servers. One of the major limitations in ClickScanner is the in-
ability to detect complex JavaScript or encrypted instructions that
do not reside in the original fraudulent app and come from a com-
mand and control server, which is almost impossible to detect at
the code level. To put a detail on ClickScanner, it can detect click
fraud generated by the local code. However, if all the execution
codes or commands are sent by a server at run time, due to the
intrinsic problem of static analysis, ClickScanner can only know
that the app will dynamically execute some code at a certain mo-
ment. Because ClickScanner cannot fetch the content of the code,
it is impossible to know whether this code is used to perform click
fraud. Hence, one future direction of this research is to support
context-based static analysis to infer the purpose of the loaded code
or instruction and analyze the dynamically loaded code using tools
like DyDroid [37].

Limitation 2: Other types of ad views. Although we have used
one of the most popular and obfuscation-resilient tools, LibRadar [30],
with several constraints to identify ad views, our taxonomy may
still be incomplete since it was built based on the current policies
and literature available. This is also one of the main causes of the
false-positives and false-negatives. Nevertheless, we can adjust the
threshold appropriately to make a trade-off in the result, or we can
use more tools [7, 27] to identify ad libraries and ad views. Addi-
tionally, due to the scalability of ClickScanner, ClickScanner is
generic and can be extended to support the detection of click frauds
on potential new types of ad views.

Limitation 3: Obfuscation. ClickScanner ’s ability is constrained
to its employed static analysis tool FlowDroid. ClickScanner can
live well with lightweight obfuscation mechanisms since the logic
of humanoid attacks is exposed. However, it cannot handle apps
that adopt advanced obfuscations or packing techniques to prevent
analysis of the app’s bytecode. To address this issue, ClickScanner
could actively interact with other techniques (e.g., deobfuscation,
unpacking, binary analysis) to recover the protected bytecode.

8 RELATED WORK

In recent years, research in click fraud detection has mainly focused
on dynamic analysis. Some of these approaches analyze ad network

traffic and summarize a pattern of click-fraud traffic. Others rely

on installing an additional patch or SDK on users’ devices to check

whether the ad click is fraudulent or not by checking the click

pattern of touch events.

Traffic patterns associated with ad network traffic. Some pre-
vious works claimed that fraudulent clicks have different traffic

patterns from benign ones. FraudDroid [14] builds UI state transi-
tion graphs and collects their associated runtime network traffics,

which are then leveraged to check against a set of heuristic-based

rules for identifying ad fraudulent behaviors. MAdFraud [11] auto-
matically runs apps simultaneously in emulators in the foreground

and background for 60 seconds each and found ad click traffic that

occurred under the testing environment involving no user interac-
tion. Clicktok [32] detects clickspam by searching for reflections of

click traffic, encountered by an ad network in the past. Detection

with traffic analysis depends primarily on the network traffic set

gathered.

Local pattern associated with click events. Some previous works
claimed that fraudulent clicks have different performance on users’

devices compared to benign ones. FraudDetective [20] computes a

full stack trace from an observed ad fraud activity to a user event

and generates the causal relationships between user inputs and

the observed fraudulent activity. AdSherlock [8] injects the on-
line detector into the app executable archive and marks the touch

events as click fraud when the Android kernel does not generate

a MotionEvent object or the properties of the generated Motion-
Event object remain unchanged. DECAF [28] performs dynamic

checking in an emulator and marks ad frauds if the layout or page

context violates a particular rule. ClickGuard [42] takes advantage

of motion sensor signals from mobile devices since the pattern of
motion signals is different under real click events and fraud events.
However, ClickGuard will likely cause participants concern over

data collection [16, 25, 44].

These tools above played an important role in revealing the
occurrence of mobile click fraud. However, if fraudulent apps (e.g.,
the apps implementing humanoid attacks proposed in this study)
simulate the real human’s clicks patterns to bridge the gap between
normal clicks and fake clicks in the click patterns, or hide their
fraudulent behaviors while executing, or only trigger clicks in a
certain period, models may fail at the very first stage. Crucially,
most of the previous strategies cannot pinpoint which app class
conducts click fraud.

9 CONCLUSION

In this paper, we explored a new and sophisticated click fraud,
named humanoid attack, and we successfully revealed its attack
patterns through static analysis. We designed and implemented
ClickScanner for uncovering humanoid attacks. By applying
ClickScanner to measure real-world market apps containing 120,000
apps, ClickScanner identifies 157 fraudulent apps from 20,000 top-
rated apps in Google Play and Huawei AppGallery. Our work also
informs the impact of ad SDKs on click fraud and the distribution
of fraudulent apps among different categories and popularity. In
conclusion, our work suggests that the humanoid attack is still



widespread in the current app markets and we hope that the de-
tection tool ClickScanner developed in this paper can effectively
combat the emerging humanoid attack.
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will facilitate the digital forensics of these fraudulent behaviors.
Meanwhile, we mark out whether these humanoid attacks were
caused by the advertising SDKs in the sixth column.
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Table 5: Details of humanoid attacks in apps from Google Play and Huawei AppGallery

Package Name Version Catgory Download Fraud Location SDK based
com.m™* I 8.7.1.5 Photography 3.7B com.wa*** No
com.ba* e 7.33.0 Others 200.0M com.ba***: void continueDispatchTouchEvent() Yes
Comif 7.3.75 Music 200.0M com.if***: void startClickConfirmBtn() Yes
comut* e 6.5.5 Video Players & Editors  100.0M com.mo***: void onClick() Yes
comgc™ I e 6.1.10 Weather 100.0M com.lo***: void e() Yes
com,cQ™* I 6.8.0.4 Social 100.0M com.co™*: void dispatchTouchEvent() Yes
com.me* 3.9.6.0 Photography 100.0M com.ho***: void a() No
oyl 5.10.2 Video 100.0M com.an***: boolean a() Yes
com QIR 6.6.4.2 Social 100.0M com.co™*: void dispatchTouchEvent() No
com.ai*” 3.9.2.3076 Education 96.11M com.dz*** Yes
com (**H e 438 Tools 67.69M com.ti***: void BMa() No
com.qu T 1.7.0.0 Tools 57.22M com.iB***: void a() Yes
com g 1.4.7.2 Tools 50.0M com.mo***: void onClick() Yes
com,pu* e 1.0.8 GAME 50.0M com.ga™**: void c() Yes
com fg e e e 3.5.8.7 Video 46.97M cn.co®™*: void h() No
com g 6.7.0.3 Others 46.54M com.co**: void dispatchTouchEvent() No
comjf* e 4.4.1264 Business 42.73M com.if***: void run() Yes
com st 4.25 Lifestyle 41.11M com.xm™**: void a() No
com.w e 1.29.32 Books 33.9M com.lw***: void d() No
com.du****** 4442 Education 31.04M e***: void a(java.lang.Object,java.util. Map) No
com.ma* e 2.4.0 Books 30.64M com.ba***: boolean click() No
comxum e 2315 Shopping 29.15M com.by***: void a() Yes
com.dz**** 3.9.2.3074 Books 24.92M com.dz*** Yes
comjy* e e 5.13.5.02 Books 24.73M com.iB***: void autoClick() Yes
comxj* e 3.9.2.3069 Books 20.81M com.dz** Yes
com hj e 1.7.2 Sports 19.82M com.mo™**: void ¢() Yes
comxj* e 4.8.52 Video 19.55M com.bi***: boolean O() No
com.ot 1.18 Music 15.1M com.ot™**: void run() No
com,pe* T 3.1.0 Lifestyle 12.01M com.mo™**: void c() Yes
com.is™*** 3.9.2.3068 Books 10.71M com.dz*** Yes
com.ca™ e 3.4.7 Finance 10.17M com.we***: void a() No
ComL s HFFHIIIEE 6.11.0.3 Entertainment 10.0M com.mo***: void onClick() Yes
com.ta ™ 6.4.8 Communication 10.0M com.mo***: void onClick() Yes
com e 5.8.0 Communication 10.0M com.mo***: void onClick() Yes
com.im™** e 4.10.1.13493  Video Players & Editors  10.0M com.mo***: void onClick() Yes
com, ] 1.1.5.2 Tools 10.0M com.ku***: void onViewClicked() Yes
e pp e 1.3.7 Social 10.0M com.mo***: void onClick() Yes
COM b e e e o 9.0.10 Sports 10.0M com.mo***: void onClick() Yes
com, gl F I 1.1.5.2 Tools 10.0M com.ku***: void onViewClicked() Yes
COmLW ™7 e 253 Photography 10.0M com.ku***: void onViewClicked() Yes
fim, g e ek ek 8.16.0 Music & Audio 10.0M d***: void onClick() No
com,po* I 6.4.0 News & Magazines 10.0M e***: void onClick() No
m* go e e 8.1.5 Music & Audio 10.0M com.mo***: void onClick() Yes
Lo g sk 1.2.9 Health & Fitness 10.0M d***: void a() No
I gt e 1.0.6 Health & Fitness 10.0M QI***: void a() No
com.aw™ 5.17.2-10 Weather 10.0M com.lo***: void d() Yes
gt e e e 1.8.7 Communication 10.0M com.mo***: void onClick() Yes
com.xm™*** " 1.9.4 Tools 9.68M com.by***: void a() Yes
com,dj e 3.9.2.3074 Others 7.85M com.dz*** No
com.Jb 6.1.2562 Tools 7.09M pp***: void a(android.view.View,float.float) No
Comjf* s 7.2.67 Music 7.02M com.iB***: void autoClick() Yes
COML g™ g 5.8.0 Tools 5.0M com.mo***: void onClick() Yes
com.am P K 4.7.0.693 Others 5.0M m***: void onClick() No
m* et 2.6.7 Communication 5.0M ¢***: void onClick() No
mo™*.in** ¥ K . 16.6.0.50080 Weather 5.0M com.mo***: void onClick() Yes
€O W e e 1.1.7 GAME 5.0M com.ga™**: void c() Yes
com f] e 6.6.6.1 Others 530.0K com.co™*: void dispatchTouchEvent() No
com.xj I 2.20.5 Shopping 480.0K com.iB***: void a() Yes
com eI e 6.0 Education 470.0K ¢***: void a(java.lang.Object,java.util. Map) Yes
comyz* e e 1.07 Others 250.0K com.da***: MotionEvent createMotionEvent() No
com.zh* e s 2.3.8 Books 250.0K com.zh™*: void clickView() No
comyz* I e 1.07 Others 250.0K com.da***: MotionEvent createMotionEvent() No
com.ha™* e 1.3.0 Travel 230.0K com.iB***: void autoClick() Yes
com ha* I 1.3.0 Travel 230.0K com.iB***: void autoClick() Yes
com. by 1.5.8 Productivity 100.0K com.bu***: void emulateClick() No
com.we* I 224 Video 20.0K com.we***: void simulateClick() No
com.se* I 2.3.10 Tools 10.0K com.se***: void createClickEvent() No
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