Understanding and Detecting Mobile Ad Fraud
Through the Lens of Invalid Traffic

Suibin Sun
Shanghai Jiao Tong University
sun1998@sjtu.edu.cn

Minhui Xue
The University of Adelaide
jason.xue@adelaide.edu.au

Shuang Hao
University of Texas at Dallas

shao@utdallas.edu

ABSTRACT

Along with gaining popularity of Real-Time Bidding (RTB) based
programmatic advertising, the click farm based invalid traffic, which
leverages massive real smartphones to carry out large-scale ad fraud
campaigns, is becoming one of the major threats against online
advertisement. In this study, we take an initial step towards the
detection and large-scale measurement of the click farm based in-
valid traffic. Our study begins with a measurement on the device’s
features using a real-world labeled dataset, which reveals a series
of features distinguishing the fraudulent devices from the benign
ones. Based on these features, we develop EVILHUNTER, a system
for detecting fraudulent devices through ad bid request logs with a
focus on clustering fraudulent devices. EvILHUNTER functions by
1) building a classifier to distinguish fraudulent and benign devices;
2) clustering devices based on app usage patterns; and 3) relabeling
devices in clusters through majority voting. EVILHUNTER demon-
strates 97% precision and 95% recall on a real-world labeled dataset.
By investigating a super click farm, we reveal several cheating
strategies that are commonly adopted by fraudulent clusters. We
further reduce the overhead of EVvILHUNTER and discuss how to
deploy the optimized EVILHUNTER in a real-world system. We are
in partnership with a leading ad verification company to integrate
EviLHUNTER into their industrial platform.

CCS CONCEPTS

« Security and privacy — Software and application security; «
Networks — Network measurement.

*Haojin Zhu (zhu-hj@sjtu.edu.cn) is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484547

Le Yu
Shanghai Jiao Tong University
yule5100309221@sjtu.edu.cn

Ren Zhou
Shanghai Jiao Tong University
zhouren@sjtu.edu.cn

Xiaokuan Zhang
The Ohio State University
zhang.5840@osu.edu

Haojin Zhu
Shanghai Jiao Tong University
zhu-hj@sjtu.edu.cn

Xiaodong Lin
University of Guelph
xlin08@uoguelph.ca

KEYWORDS
Invalid Traffic; Ad Fraud; Click Farm

ACM Reference Format:

Suibin Sun, Le Yu, Xiaokuan Zhang, Minhui Xue, Ren Zhou, Haojin Zhu,
Shuang Hao, and Xiaodong Lin. 2021. Understanding and Detecting Mobile
Ad Fraud Through the Lens of Invalid Traffic. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (CCS
’21), November 15-19, 2021, Virtual Event, Republic of Korea. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3460120.3484547

1 INTRODUCTION

Programmatic advertising (ad) has become the driving force for
the growth of internet advertising in the past decades, which is
benefited from the innovation of new ad technologies that bring us
the efficiency of automatic buying and selling of advertisements.
Real-Time Bidding (RTB), one of the most significant technologies,
provides a digital marketplace, where website owners and mobile
app developers (ad publishers) can sell the spare spaces (ad slots)
on their websites or applications to advertisers through real-time
auctions. Over the past 10 years, mobile in-app advertising has
become the major increasing growth of advertising revenues. It is
reported that the global RTB market size could potentially grow
from $6.6 billion USD in 2019 to $27.2 billion USD by 2024 [33].

Unfortunately, this increased prominence has also attracted the
attention of fraudulent ad slot sellers, who try to inflate their in-
comes by fabricating ad requests. This task is usually outsourced to
click farm owners, who can control thousands of mobile devices or
emulators and mimic normal app usage patterns to trick advertisers
into believing that their ads have been seen by actual, interested
users. Fig. 1 substantiates an example of a “click farm” reported
by the recent news [26, 32], which leverages massive real smart-
phones to carry out a large-scale ad fraud campaign. Nowadays,
an advertiser usually pays money for every 1,000 impressions of a
given advertisement, instead of clicks, which is commonly known
as Cost Per Mille (CPM) [20]. As a result, those committing frauds
within this system have evolved their technique from “click spam”
into the generation of “invalid traffic”. It is estimated that every
year trillions of delivered ad impressions are not watched by real
people, leading to losses in the tens of billions of US dollars for
advertisers [12, 42].

mailto:zhu-hj@sjtu.edu.cn
https://doi.org/10.1145/3460120.3484547
https://doi.org/10.1145/3460120.3484547

~ EEEZEZEEEEEE
EEZEEEERETEE

(a) Software level emulation

(b) Hardware level automation

Figure 1: Automated and coordinated “click farm”.

Due to the substantial financial loss caused by invalid ad traffic,
the problem has attracted increasing attention. However, many
prior works that focus on the problem of click spam detection [13,
14, 40] or authenticated click [15, 21, 36] cannot be applied in the
era of RTB, since the basic pricing model in the RTB system is CPM
rather than traditional CPC (cost-per-click), indicating that fraud-
sters no longer need to click on the ads, which renders detecting
the invalid traffic more difficult.

In the industry, traffic verification is performed by designated
companies/organizations, which are trusted by both ad publishers
and advertisers. By removing the invalid traffic before the billing
cycles, they help advertisers minimize wrongful payment while
protecting the rights of ad publishers. The key players in this ecosys-
tem include Integral Ad Science (IAS) [3], Oracle [4], and White
Ops [5]. The best practice of combating invalid traffic adopted by
the mainstream traffic verification companies heavily relies on rule-
based detection such as blacklists and parameter/metadata checks
(e.g., IP blacklists, location validity checking, user agent (UA) check-
ing). To date, little attention has been paid to the detection and
measurement of large-scale click farms.

Challenges. Detection of click farms faces the following unique
challenges. 1) Attackers have adopted a series of hardware/software
level strategies (e.g., frequently changing the various parameters
including IP, UA, IMEI, emulating the human behavior including the
mobility pattern, and even using the automated tool) to mimic the
human behaviors and generate “seemingly organic” traffic, which
is difficult to detect. 2) Due to the noisy ad traffic data and dynamic
network environment, the detection of invalid traffic based on any
specific fraudulent device is less reliable. 3) In practice, it is expected
to process billions of transactions per day. The amount of data that
needs to be processed makes it challenging to design a practical
detection system with low overhead.

EviLHUNTER. In this study, we present EVILHUNTER, the first
work to investigate click farm-oriented invalid traffic detection
based on the real-world mobile RTB transaction data. EVILHUNTER
handles invalid traffic via detecting the source of traffic, i.e., the
fraudulent devices involved in the click farms. EVILHUNTER is moti-
vated by the following observation: although any individual fraudu-
lent device tends to adopt strategies to mimic the organic traffic, the
attackers behind the click farm have strong incentives to camou-
flage the behaviors of invalid traffic with certain patterns in order
to lower the cost. Such group features could be used to design a
novel automatic click-farm and fraudulent device detection scheme.

Based on the above insights, we first conduct a measurement of
the device’s features using a real-world labeled dataset, which re-
veals a series of features distinguishing the fraudulent devices from

the benign ones. To make use of the features depicted by fraudulent
devices as groups, we further propose a three-stage detection sys-
tem, EVILHUNTER: 1) Stage 1 uses the identified features to build a
classifier to flag individual devices; 2) Stage 2 captures cluster-level
features by applying the Top-App based Clustering Algorithm, which
leverages the app usage patterns of the devices to group devices; 3)
Stage 3 aggregates the information produced in the previous stages
and performs majority voting to detect click farms as well as the
fraudulent devices.

Our extensive evaluation shows that EVILHUNTER is able to cap-
ture real-world click farms with high accuracy and with moderate
overhead incurred. We also reveal interesting findings surrounding
the detected click farms, which may benefit future research. We
have reported all of the findings to a leading ad verification com-
pany (Company A), which has positively acknowledged our results.
Based on our study, we have contributed a fraud reason code on
click farm detection in Company A’s real-world detection system,
which is expected to help the ad verification industry to identify
large-scale fraudulent device clusters and filter invalid traffic.

Contributions. We make the following key contributions:

e New features (Sec. 4). We perform an ad fraud measurement
study on a labeled real-world dataset, which reveals a series of
important characteristics of fraudulent devices.

o New system (Sec. 5). We propose EVILHUNTER, a novel three-
stage fraud detection system for automatically identifying device
clusters and classifying the fraudulent devices in terms of their
cluster-level features based on real-world ad bid logs.

e New findings on cheating strategies of click farms (Sec. 7). We
successfully identify a group of large-scale click farms in the
real-world dataset. After focusing on the largest click farm and
tracing back to the historical data in two 10-day datasets in 2018
and 2019, respectively, we discover similar patterns in a large
number of devices. We reveal a series of strategies adopted by
this super click farm to evade detection.

o Optimization and real-world deployment (Sec. 8). We propose sev-
eral optimization mechanisms that greatly reduce the overhead
of EVILHUNTER, and make it practical to be used in the real
world. We evaluate EVILHUNTER on a 1-day unlabeled dataset
containing 53M devices. Our evaluation shows that EVILHUNTER
is able to detect 8M fraudulent devices related to click farms
within 2 hours. The top results are confirmed by Company A,
and Company A has integrated EVILHUNTER into its real-world
system.

Ethical considerations. Each time a user’s device requests an ad
material, the ad exchange will transmit the request and record it as
a log. The source data in the request is collected by the ad software
development toolkit (SDK) embedded in an app only after the user’s
consent on the app’s privacy agreement. The ad traffic verification
company routinely collects ad bid request logs from ad exchange
for the purpose of verifying and measuring the quality of the ad
traffic. The data is kept in the ad traffic verification company data
center with access being granted only to the authors’ affiliation. We
have obtained approval from the ad traffic verification company
for accessing the ad bid logs. The data (such as IMEIs) provided by

the ad traffic verification company does not include any Personal
Identifiable Information (PII).

2 BACKGROUND

In this section, we introduce the system model of programmatic
advertising and then explain the ecosystem of real-time bidding
by showing a typical process of serving an ad in programmatic
advertising and the role of fraudulent publishers. We also discuss
the best practice of invalid traffic (IVT) verification and filtering in
the industry.

Ecosystem of programmatic advertisement. Digital advertis-
ing is mainly processed over “programmatic” platforms in an au-
tomatic way, which involves Advertiser, Publisher, Demand Side
Platform (DSP), Supply Side Platform (SSP), and Ad-Exchange. The
Publisher (e.g., developers of mobile apps) reserves space in their
apps as ad slots for displaying advertisements and uses SSPs to
auction their available ad slots. Advertisers use DSPs (e.g., TheTrad-
eDesk and Baidu) to bid on these available ad slots based on how
successful they think those ads will be in attracting the interest
of visitors. Similar to the stock exchange, the Ad-Exchange (e.g.,
Google, MoPub, and Tencent) serves as a digital marketplace, which
allows advertisers and publishers to sell and buy ad slots through
RTB-based auctions. Each ad slot would typically go through many
auctions before being matched to the final advertiser. These auctions
happen billions of times per day, usually within the milliseconds
before an ad is presented on the end user’s device.

A typical RTB process is illustrated in Fig. 2. When a user opens
up an app and triggers an ad impression (i.e., a click on the ad),
the app sends an ad request to the SSP, which further forwards the
request to the Ad-Exchange. The ad request often contains device
ID, IP address, timestamp, the user’s current location, as well as
other information about the ad slot. Upon receiving the ad request,
the Ad-Exchange initiates an auction of the ad slot and records an
ad bid log in the database. The bidding request is then sent to each
registered DSP in the Ad-Exchange and the DSPs bid on the ad slot
on behalf of the advertisers. As specified by OpenRTB [20], in the
most real-time bidding systems, Cost Per Mille (CPM) is used to
charge advertisers. When the Ad-Exchange initiates an auction, the
DSPs on behalf of advertisers would respond to the optimal price,
in accordance with the rules set by advertisers. The Ad-Exchange
informs the winner, and the corresponding advertisement is then
sent to the user and is displayed on the app.

Ad fraud. Unfortunately, this increased prominence has also at-
tracted the attention of tech-savvy fraudulent publishers, who try
to produce fake traffic and fraudulent ad inventories to trick ad-
vertisers into believing that their ads are being seen by genuinely
interested users. According to the Invalid Traffic (IVT) Detection
and Filtration Standards [24], IVT can be caused by multiple sources.
On the one hand, IVT involves the traffic identified through routine
means of filtration, executed through the application of lists, or
with other standardized parameter checks. This type of IVT can
be generated by known invalid data-center traffic, bots, spiders, or
other crawlers, non-browser agents. On the other hand, some types
of IVT, produced by known automated systems, emulators, custom
automation software and tools, infected and hijacked devices, in-
centivized human activities, and adware/malware that conducts

Publisher

Develop apps with ad slot

Advertisers

'
1 0.Installation

(Mobile Device

Installed with Publisher’s apps

DSP

6. Ad delivery

A
et
3.9)

e
4. Bid respons’g

(©) Benign &) Fraudulent

il.Ad request

2. Ad request
SSP ——>» Ad Exchange

Verification &

Measurement

Collect bid requests;
Company & send feedback

: Roles in RTB ecosystem

C): Detection target in EVILHUNTER

Figure 2: The ecosystem of “programmatic” advertising and
the flows of a typical RTB process. The payment process in-
dexed in 7 is achieved indirectly via the intermediates.

deceptive actions (e.g., ad injection and unauthorized overlays), re-
quire more advanced techniques to analyze and detect, which often
include multi-point corroboration/coordination and a significant
amount of human intervention. In this work, we focus on detecting
the provenance of IVT (i.e., the fraudulent devices), and discover
organized device clusters.

Ad traffic validation. To defend against ad fraud, the industry
relies on third-party ad traffic verification services provided by
the ad traffic verification companies, such as White-Ops, IAS, and
RTBAsia. The traffic identified as invalid must be deducted from
profits between the publisher and the advertiser as per the Invalid
Traffic Detection and Filtration Standards [24]. To enhance the
robustness of the detection results, there is a pressing need to com-
pare and cross-check the IVT measurement results across different
measurement organizations. For example, 30 major IVT verification
companies across Asia-Pacific, including RTBAsia, Baidu, Tencent,
and Toutiao, carry out the project of Distributed Invalid Traffic
Filter (DIF). This allows different traffic validators to upload their
own IVT measurements based on billions of daily ad bid request
records and vote if there is any specific suspicious device or IP
belonging to the attackers. Therefore, it is desirable to design a
novel third-party traffic validation approach by monitoring the ad
bid request logs.

3 DATASETS

In this section, we present the format of the ad bid logs, which serve
as the basis of our design of EvILHUNTER. We also introduce the
information of the datasets used in the paper.

3.1 The Format of Ad Bid Logs

Our datasets contain the ad bid logs collected by our industrial
collaborators, which record the ad bid requests in ad exchange plat-
forms. A typical ad bid request contains 10 fields (see Table 1). The
IP refers to the IP address of the device. The Ad Slot ID represents
the unique identifier of the ad slot assigned by the ad-exchange
platform. There are three types of Device IDs: IMEI, Android ID,

Table 1: Fields of ad bid logs. Table 2: Datasets used in this paper; D;yqin and Dyes; are extracted from Dogoo.

Devices

Field Description Name Labeled? Log Duration Used in Purpose
IpP Source IP F | B
Ad Slot ID A globally unique id of the requested ad slot p,,,, Y 2M |0.2M 82M May 6 -June5,2020 Sec.4 Fraudulent devices measurement
IMEI IMEI MD5 value
Android ID Android ID raw/MD5 value Dirain Y 120k | 113k 43M May 6 - May 15,2020 Sec.6 Training of EVILHUNTER
IDFA IDFA MD5 value :

& . Sec. 6 EVILHUNTER evaluation
os Operating system of the device Drest Y 125k | 124k 49M May 16 - May 25,2020 o 7 Cpick farm investigation
Location Real-time GPS coordinates of the device
Timestamp The time when the request was sent Dyo1s N 290M 290M Mar 21 - Mar 30, 2018 Sec. 7 Backtracking the largest click farm;
Bunt?lle 1D Bundle ID of the app .generating the request Daoro N 63M 63M Mar 6 - Mar 15, 2019 Cheating strategy investigation
Device Brand The brand of the device
User-Agent (UA) The user agent of the http request D321 N 53M 117M Jan 13, 2021 Sec. 8 In-the-wild detection & validation

and IDFA. All of them are hashed by MD5. IMEI and Android ID
are used in Android devices while IDFA is for iOS devices. The 0S in-
dicates the operating system of the mobile device, either Android or
i0S. The Location represents the device’s geo-location at the time
of ad request generation. The Timestamp refers to the time when
the request is sent. The Bundle ID indicates from what app the ad
request is originated. The Device Brand represents the brand of
the device. The User-Agent (UA) refers to the user agent of the
ad HTTP request. All the fields, except for IP and Timestamp, are
reported in ad request parameters by the app.

3.2 Overview of Datasets

We use 6 different datasets in this paper, which are described in
Table 2. All the datasets contain ad bid logs generated by mobile
devices during a certain period. Here we briefly introduce each
dataset, and more details will be provided in later sections where
they are in use.

D2020. D2o2o is a labeled dataset containing ad bid request logs
recorded from May 6, 2020, to June 5, 2020. The dataset contains
82 million logs, generated by 2 million fraudulent devices and 0.19
million benign devices. We use it as a ground-truth dataset to find
distinct features for fraudulent devices (Sec. 4).

D¢rain and Diest. Dirgin and Dyegy are extracted from Dogzo. They
serve as a training set and a test set for the evaluation of EviL-
HUNTER (Sec. 6). Moreover, D;es; is used to perform click farm
investigation in Sec. 7.

D2018 and Dagq9. After identifying a few click farms in Dyegr, we
pick the largest click farm and trace back to two 10-day datasets
in 2018 and 2019 to identify devices that share the same charac-
teristics (Sec. 7). These click farm-related devices in 2018 and 2019
form Dyp15 and D3p19. We use these two datasets to investigate the
general cheating strategies of click farms (Sec. 7).

D2¢21. To evaluate the practicality to deploy EVILHUNTER in the
real world, we use Dy as a validation dataset, which contains
1-day’s data without labels in 2021.

Ground-truth labels. In Dygyg, the fraudulent devices are col-
lected from a distributed blockchain system, where a group of lead-
ing industrial traffic verification companies work together to report
highly suspicious devices. They identify the suspicious devices with
auxiliary information collected by their own SDKs. Each of these
companies regularly uploads fraudulent device information found
by itself to this blockchain platform for majority voting: one device
is deemed to be fraudulent if more than two members upvote it,

and it will be added to the blacklist. Each blacklisted device will be
blocked by them for several months, until being removed from the
blacklist after a certain time. On the other hand, benign devices are
collected by Company A using some incentives to encourage users
to upload some evidence (e.g., photos of surroundings) to prove that
they are human. These pieces of evidence are examined by Com-
pany A manually to ensure that they are real. Both fraudulent and
benign devices are double-checked by Company A’s commercial
rule-based system, which takes into consideration other aspects of
the devices, such as the account activeness of the device in social me-
dia, the physical trace of the device. We extract the involved ad bid
logs of the fraudulent devices and benign devices as dataset Dagz.

4 MEASURING FRAUDULENT DEVICES

Ad bid requests not only record the ad transaction history between
the organic (benign) users but also serve as snapshots of evidence
related to ad fraud. This provides us with the opportunity to capture
the fraudulent devices and screen out the invalid traffic. In this
section, we first use a real-world ad bid log dataset (Dz2) to study
the features of fraudulent devices. These measurement results serve
as the basis of EVILHUNTER. It is observed that fraudulent devices
exhibit different patterns, e.g., they are likely to adopt more IPs to
generate ad bid requests for one or two ad slots. Here we take several
examples to show the differences between fraudulent devices and
benign devices as shown in Fig. 3.

Statistical Number: # unique IP addresses.
Observation 1: Fraudulent devices bind to more IP addresses.

The numbers of unique IP addresses used by fraudulent devices and
benign devices are shown in Fig. 3a. As seen from Fig. 3a, fraudulent
devices bind to more IPs than benign ones. 67.9% of benign devices
use 1 IP address, and 4.9% of them use more than 10 different IP
addresses. In contrast, 48.0% of fraudulent devices use more than 5
different IP addresses and 3.5% of them correspond to 50 different
IPs. This phenomenon is perhaps due to the extensive usage of
commercial residential IP proxy services, well aligned with the
previous study [25].

Entropy: ad slot IDs.
Observation 2: Fraudulent devices have lower ad slot entropy.

We compare the entropy of ad slot IDs in Fig. 3b. As shown in Fig. 3b,
91.9% of fraudulent devices have an entropy of 0, meaning that they
only had one unique ad slot ID. Intuitively, the fraudulent devices
target the specific ad slot ID to make profits. However, benign de-
vices usually request more than one ad slot IDs to enjoy the various

Benign Device %
3 Fraudulent Device 80

=1 Benign Device
[Fraudulent Device

Percentage%

S SSSSSSSTSSSISSRRSSSSN
te
Percentage%

3

[Benign Device
[Fraudulent Device 80

Benign Device 50 Benign Device
=3 Fraudulent Device =3 Fraudulent Device

2
&

Percentage%
3 8

Percentage%

5

A el .
NN Y YO " IS - S . [. . 0 % 7
S 0 01 02 03 04 05 06 07 0.8 09 1.0 0 5 10 5 20 24 12 3 4 5 6 7 8 9 10+ 2 4 5 6 7 8 9 10
#1P Ad Slot Entropy # Active Hour # Brand Android Version
(a) # of unique IPs. (b) Entropy of ad slot IDs. (c) Active hours per day. (d) # of device brands. (e) Android OS version.

Figure 3: The comparison of different features between fraudulent devices and benign devices in D3(29. The lines in Fig. 3b and

Fig. 3c represent kernel density estimations across devices.

services. This leads to an interesting phenomenon that benign users
have a higher value in terms of ad slot entropy. It is observed that
there are 41.9% benign devices with an entropy larger than 0.5, in
contrast to the fraudulent devices with the proportions of 2.2%.

Temporal: active hours.
Observation 3: Fraudulent devices are more active.

We extract the active hours for the devices in both labels. From
Fig. 3c, we can learn that most of the benign devices (99.9%) have
less than 12 active hours per day in the dataset. In contrast, there
are 11.0% of the fraudulent devices being active for more than 15
hours per day in the dataset. Even worse, 1.5% of them are active
for more than 20 hours per day, which is unbelievable for humans.
The potential reason behind this is that the attackers exhibit a high
incentive to generate more invalid traffic within a specific period
to gain more economic revenue.

Inconsistency: # device brand names.

Observation 4: Fraudulent devices use multiple brand names while
benign devices usually use one brand.

The number of device brands is shown in Fig. 3d. More than 95% of
benign devices only used one brand name regardless of the datasets;
only 16.8% used two brand names. However, 16.8% of fraudulent
devices used two brand names; roughly 5.6% of them used more
than 5 brand names. More brands for fraudulent devices may occur
when attackers frequently change the device’s brand in lieu of
device IDs.

Android version.
Observation 5: Fraudulent Android devices run lower OS versions.

As shown in Fig. 3e, we observe that fraudulent devices are in-
stalled on lower Android versions in comparison to benign devices.
9% (resp. 84%) of fraudulent (resp. benign) devices are on Android
8,9, and 10. 79.7% of fraudulent devices are running Android 4 or
lower, which is not installed by any benign devices in 2020. Hence,
we conclude that fraudulent devices run lower Android versions
than benign devices do. The potential reasons are two-fold: (i) Us-
ing Android phones on lower versions is more cost-effective for
attackers to mount a larger scale mobile ad fraud campaign. (ii)
The phones with earlier Android versions are much easier to gain
full access to the root permission, enabling fraudulent tasks such
as auto-clicking with ease. This resonates with the fact that some
mobile phone manufacturers (such as Huawei) ban users from un-
locking the bootloader on high Android version devices, serving as
a requisite for root access acquisition [44].

5 EVILHUNTER

In this section, we present the detailed design and implementation
of EvILHUNTER. The basic insight of EVILHUNTER is contingent on
the cluster-level features rather than any individual device features
to identify the fraudulent devices. The main goal of EVILHUNTER is
to detect malicious device clusters (click farms) besides identifying
fraudulent devices.

In general, EVILHUNTER is comprised of three stages (see Fig. 4).
1) In the classification stage (Stage 1), based on a series of features
discussed in the previous section, EVILHUNTER designs a device
classifier to distinguish fraudulent devices and benign devices by
exploiting the features extracted from the ad bid logs; 2) In the
clustering stage (Stage 2), EVILHUNTER proposes a Top-App based
Clustering Algorithm, which builds the device graph based on the
connectivity features among devices, and then identifies the closely
connected device clusters. 3) In the aggregation stage (Stage 3),
we classify each cluster by performing majority voting based on
the device labels within the cluster and then relabel the devices
based on the cluster’s classification result, i.e., all devices inside a
fraudulent cluster will be labeled as fraudulent. The output of EviL-
HunTeER is ([id], label) pairs, indicating which devices are grouped
into clusters and whether these clusters are fraudulent or benign.

5.1 Stage 1: Classification

The device classifier stage is a general machine learning classifica-
tion process. The input is a bunch of ad bid logs while the output
is the predicted score sy, for each device, ranging from 0~1. 0
means a high confidential benign score of a device and 1 means
a fraudulent one. Device classifier consists of three components:
Log-Device Mapper, Device Feature Extractor, and Device Score Predictor.

Module 1.1: Log-Device Mapper. Log-Device Mapper constructs the
log-device mapping from the ad bid logs. It then takes the ad bid
logs as input and outputs a device-log mapping M, which maps each
device ID (id) to the corresponding logs generated by this device.
To retrieve the unique id for each device, given an Android device,
Log-Device Mapper uses the combination of the MD5 values of IMEI
and Android ID. Since both IMEI and Android ID may be an empty
value caused by strict permission control enforcement, we use a
combination of them to cover more devices in the ecosystem. On
the other hand, since Apple restricts the tracking for iOS devices:
all i0S apps must have a user’s permission to access their IDFAs
after i0S 14.5 [7], and therefore the detection of invalid traffic for
iOS devices is beyond the scope of this paper.

Module 1.2: Device Feature Extractor. The Device Feature Extractor
extracts representative features that can reflect the characteristics

Stage 1: Classification

Stage 3: Aggregation

Module 1.1 Module 1.2 _
Log-Device |[—> E D —>|| Device Feature |[—> D -

Mapper Extractor

Module 1.3 Module 3.1 Module 3.2
Device Score D @] Label g Device

Predictor Voting Relabeling

Log-Device Mapping Device Feature

Stage 2: Top-App Based Clustering

Device Score

Data

Module 2.1 — Module 2.2
Top-App > @ = Graph > D

Extractor Constructor

lodule D é /é
el I e L 7 B T

Detector] Fraudulent Device Refined Device

Top-App Feature Device Graph

Device Cluster Cluster Label

Figure 4: The workflow of EVILHUNTER.

Table 3: Features extracted by Device Feature Extractor.

Feature Categories Feature Name

Number of logs

(a) Statistical Features Number of unique IP addresses
Number of unique ad slot IDs
Log entropy

(b) Entropy Features IP entropy

Ad slot ID entropy

Number of active hours

Maximum speed

Number of brands

(d) Inconsistency Features Fake brand ratio
Non-browser UA ratio

(c) Spatial-Temporal Features

of fraudulent devices. To achieve this, we defined 11 features that
capture the nature of fraudulent devices covering all the fields of the
ad bid logs (Table 1), and group these features into four categories
(Table 3). These features are extracted as follows.

(a) Statistical features. Device Feature Extractor extracts the statistical
features of a device, including the number of log entries, unique IP
addresses, and unique ad slot IDs. Intuitively, all these numerical
features should be within a certain range, since a normal user
cannot use too many different IP addresses or generate too many
ad requests.

(b) Entropy features. Device Feature Extractor calculates the entropy of
the three features shown in category (b) in Table 3, which measures
the uncertainty of the features: higher entropy indicates higher un-
certainty. Device Feature Extractor adapts the normalized entropy [29]
to compute the features as follows:

Z p(xi) logy (p(xi)))
log, (N) ’
where x1,...,x, are n possible results of a feature X (e.g., IP ad-

dress); p(x;) is the ratio of x; in all N logs generated by this device.
Device Feature Extractor applies Eqn. 1 on logs, IPs, and ad slot IDs
to compute the normalized entropy for them.! Note that if N = 1,
n(X) =o.

(c) Spatial-temporal features. Spatial-temporal features are broken
down to a given device’s active hours and the maximum moving
speed. The number of active hours for a device is the total quantity
of hours when there was at least one ad bid request sent during that
hour. To compute the maximum speed, for each device, Device Fea-
ture Extractor uses the location and timestamp fields to compute
the average speed between every two consecutive ad bid requests

To compute the normalized entropy of logs, the logs are first grouped according to
the hours of occurrence.

in the logs and selects the maximum value. To avoid the influence
of default location values, we ignore those values including (0,0)
and high-frequency locations far away from the target area.

(d) Inconsistency features. Inconsistency features aim to capture the
inconsistencies in the logs. The first feature in the category (iv) is
the number of device brands for each device. Normally, a device
should only have one brand name. So if a device has too many
brand names, it may be a signal of fraud. However, the brand fields
of a device may be incorrectly reported by app developers in the
ad request parameter; to address this issue, Device Feature Extractor
extracts another feature, called fake brand ratio, to measure the ratio
of fake brands for each device. Device Feature Extractor compares the
brand names with two whitelists obtained online,? which contain
269 real brand names. If a brand does not appear in any of the two
whitelists, Device Feature Extractor considers it as fake. The third
feature is the non-browser User-Agent ratio. Normally, the UA
field in a log reflects the Browser or Webview information of the
OS running on the device. The UA is either ‘Mozilla’ or ‘Dalvik’.
However, for fraudulent devices, the UA may be forged (e.g., ‘Go-
http-client’), as it is not a real device. Therefore, Device Feature
Extractor uses the non-browser UA ratio as a feature.

Module 1.3: Device Score Predictor. The Device Score Predictor uses
traditional machine learning models to perform the training and
testing on the features. Particularly, any feature-based classifier (e.g.,
logistic regression, decision tree, kNN, SVM, and neural network)
may potentially be used. However, we note that deep learning is
hard to interpret the semantics (or representation) of the features
extracted by Device Feature Extractor. In summary, the output of
Device Score Predictor is the predicted score sy, for every device.

5.2 Stage 2: Top-App Based Clustering

In Sec. 5.1, we have proposed a novel classifier to distinguish fraud-
ulent devices from benign ones based on the ad bid logs. However,
in practice, such individual classification results may be affected by
the noisy data or the intentional manipulations of the attackers. To
address this problem, in Stage 2, we group the devices into various
clusters and then exploit the cluster-level features to determine
if the clusters and their devices are fraudulent or not. The pro-
posed top-app-based clustering algorithm consists of three steps:
extracting top-app features, constructing device graph structure,
detecting communities within the graph by applying the Louvain
algorithm [8] to cluster devices.

2gsmarena.com and kimovil.com.

gsmarena.com
kimovil.com

Figure 5: A sample device graph constructed by 1,000 fraud-
ulent vertices (in blue) and 1,000 benign vertices (in orange).

Module 2.1: Top-App Extractor. In this step, we aim at extracting
the key features that can represent the synchronicity of the devices.
Here we choose the app usage patterns as the major factor that
we consider, in that the attackers tend to deploy fraudulent de-
vices at a large scale for more revenue. Thus the ad bid requests
generated by those fraudulent devices are primarily for the target
app. Furthermore, the attackers have to control a huge number of
devices automatically, which leads to a similar app usage pattern
for those controlled devices. Specifically, the usage pattern UPy,,
for a device is formulated as:

UPdeu =< fVE‘I(appl), .- uf"ffI(aPPn) >, (2)

where freq(app;) denotes the frequency of using app; in one day.

However, there are thousands of apps in the whole ad ecosys-
tem. Such a feature vector with thousands of elements greatly
hinders computation. To reduce the computation complexity, we
only keep the values of freq(app;) for the top n apps in UPy,,,. We
will discuss the detailed parameter selection process in Sec. 6.1 and
Appendix A.

Module 2.2: Device Graph Constructor. To construct a device graph
using the above features, we define the similarity between a device
pair using the cosine similarity as the following:

UPdeul . UPdevZ
”UPdevl” . ”UpdevZ”

Then for each node (device) pair, we add an edge between them
and use the similarity as the weight of the edge. To avoid con-
structing weighted graphs with massive low-weight edges, we set
a threshold Sim;p, and only add edges between two devices when
Sim(devl, dev2) > Simyp,.

Sim(dev1, dev2) =

®)

Module 2.3: Community Detector. An example of the device graph
is depicted in Fig. 5. A key observation is that the densely connected
clusters are mostly composed of vertices with one type, i.e., either
with all fraudulent ones or benign ones. Here we use the popular
Louvain method [8, 46] to identify communities in the device graph.

5.3 Stage 3: Aggregation

We aggregate the results of the two stages before Stage 3 via Label
Voting and Device Relabeling.

Module 3.1: Label Voting. First, we use majority voting on the
labels obtained from Stage 1 to determine whether the clusters
in Stage 2 are fraudulent or benign. Specifically, we compute the
average predicted score of the devices for each cluster as the score
for the cluster (s¢). If sc > s;p,, we label the device cluster as
fraudulent. Otherwise, the device cluster is benign. Here we only
consider the clusters that are composed of more than aN, N is
the total number of devices. For example, when a = 0.1, we only
consider clusters that have more than 0.1N devices for label voting.

Module 3.2: Device Relabeling. A significant advantage of Stage
2 is the capability to calibrate the devices labeling taking place in
Stage 1. As mentioned in Sec. 5.2, the fraudulent devices may be
falsely predicted as benign ones due to the different configurations
of the attackers. Thus, for each cluster of size greater than aN, we
use the label of this cluster after majority voting to relabel each of
its devices.

5.4 Implementation

We implement EVILHUNTER on a local server equipped with 6
CPU cores, 64 GB memory, and 10 TB SSD, running Windows
10. In Stage 1, the Log-Device Mapper and Device Feature Extractor
are implemented using the Scala programming language on the
Apache Spark framework. The Device Score Predictor is implemented
using Python. In Device Score Predictor, during pre-processing, the
features in categories (i), (iii), and (iv) are normalized using the
RobustScaler in the Scikit-learn package to avoid being stretched
by some outliers. We implement 5 classifiers, including Gradient
Boosting Decision Tree (GBDT), Multi-Layer Perceptron (MLP),
k-nearest neighbors (kNN), Support Vector Machine (SVM), and
Logistic Regression (LR). For GBDT, we use LightGBM [22]. We set
20 as the number of early stopping rounds, and enable positive and
negative bagging with a bagging frequency of 3. For MLP, we use
one hidden layer with 100 neurons. For kNN, the k is set to 15. For
SVM, we use LibSVM [9]. For LR, we use the default settings in the
scikit-learn package [31]. In Stages II and III, we implement all the
components via scala on Spark.

6 EVALUATION

In this section, we describe the parameter settings and evaluation
results. Specifically, for the stage 1 classifier, we evaluate the detec-
tion performance by cross-validation. Secondly, we compare the
detection results of EVILHUNTER with those of Stage 1 alone, to
show the performance improvement introduced by Stages II and III

6.1 Parameter Settings

Table 4 lists all the parameters we use in the system design. To
choose the best settings which balance detection accuracy and
the computational cost, we start from an initial parameter setting.
We then compare the results after tuning each of the parameters.
Specifically, we use D;rgin as the training set to train EVILHUNTER
using different parameter settings and use the first day of Dyes; (30k
fraudulent devices and 30k benign devices) as the test set to evaluate
the performance. The initial parameter settings are (= 5, Sim;p, =
0.5, 5;pr = 0.5, = 107*). The evaluation is detailed in Appendix A.
Based on our evaluation, we choose the optimal parameter settings
(n = 5,Sim;py = 0.5, 5, = 0.3, = 1073) in our paper.

Table 4: The parameters in EVILHUNTER.

Parameter Explanation
n The number of top apps considered in UPge,
Simp, The minimum similarity to add an edge between two nodes
Sthr The minimum score of labeling a cluster fraudulent
a The minimum size of a cluster = @ N, N is the total device number

Table 5: Cross-validation results across models: mean values
and standard deviations (in parentheses).

Model Accuracy Precision Recall F-score
LightGBM 0.9501 (0.0004) 0.9599 (0.0010) 0.9395 (0.0008) 0.9496 (0.0004)
MLP 0.9496 (0.0006) 0.9603 (0.0015) 0.9379 (0.0019) 0.9490 (0.0005)
kNN 0.9426 (0.0008) 0.9839 (0.0006) 0.9000 (0.0016) 0.9401 (0.0008)
SVM 0.9499 (0.0005) 0.9594 (0.0012) 0.9393 (0.0014) 0.9492 (0.0004)
LR 0.9465 (0.0007) 0.9623 (0.0010) 0.9294 (0.0015) 0.9456 (0.0005)

6.2 Evaluation Results

Dataset. To evaluate the effectiveness of EVILHUNTER, we ran-
domly select 30k fraudulent devices and 30k benign devices each
day from May 6 to May 15, 2020, from D,y as our training dataset
Dirain- After merging the devices with the same IDs, we have
120k/112k unique fraudulent/benign devices. This dataset (D¢rqin)
serves as a balanced training dataset for the classifier in Stage 1.
Using the same method, we obtain 125k/124k unique fraudulent/be-
nign devices from May 16 to May 25, 2020, as our test set Dyes¢.

Results of Stage 1. We apply the 5 classifiers as the Device Score Pre-
dictor on our dataset to classify the fraudulent devices based on the
logs. We follow 5-fold cross-validation. The mean and one standard
deviation of the 5-fold test for accuracy, precision, recall, and F score
are presented in Table 5. All 5 classifiers achieve over 94% Accuracy,
with a Precision rate in excess of 95%. The best model, LightGBM,
achieves 95.01% Accuracy, 95.99% Precision, and 93.95% Recall. The
classification results have very small variances. We find that there
are approximately 3% false positives during the test. The main
reason for these false positives is that their statistical features and
entropy features are similar to those of fraudulent ones. The users of
these devices are probably stimulated by the apps such that they fre-
quently browse or click on the ad contents. The quickly generated
ad bid logs of such devices are mostly targeted to the apps where
users can earn money by reading news, watching videos, or even
viewing ads. As discussed in Sec. 5.2, false negatives in this stage
are mainly caused by intentional manipulations of the attackers.
To confirm that the four sets of features are indeed useful for the
classification task, we start by using features in the first category
presented in Table 3 for classification and adding other feature sets
one by one. We use the LightGBM model for classification, and plot
the ROC curves for the 4 cases in Fig. 6. As can be seen from Fig. 6,
the AUC values keep increasing when more feature sets are used,
indicating that all features are effective for the classification task.

Necessity of Stage 2 and Stage 3. To show that it is beneficial to
include Stages II and III in the system, we perform an experiment
on D;cs;, using 3-stage EVILHUNTER and State I alone, respectively.
Fig. 7 shows the Precision and Recall. It is observed that compared
to using State I alone, both Precision and Recall have increased when
using 3-stage EVILHUNTER. Meanwhile, the decrease in Precision
is relatively small. This demonstrates that the proposed 3-stage
mechanism is more effective and robust in detecting real-world

|
|

k) e T
s e
B8 s
[0) | o
206 2 ’ -== [a]
= ’
§ 04 | 7 [a,b]
° s 1 | | laooae [a,b,c]
202 ’
= / —-= [a,b,c,d]
00 7
0.0 0.2 04 0.6 0.8 1.0

False Positive Rate
Figure 6: ROC curves; [X,Y] means categories X and Y are
used for classification.

1.000

0.975

—
0.950 ~

0.925 - — —
S Al it U v
0.900
0875 Precision (Stage) -¥-- Recall (Stage)
Precision (Full Stages) —Y— Recall (Full Stages)
0.850
05-16 05-17 05-18 05-19 05-20 05-21 05-22 05-23 05-24 05-25

Date
Figure 7: Precision and Recall comparison.

fraudulent devices compared to traditional classifiers. Moreover,
as shown in the next section, Stages II and III are important in
detecting click farms.

7 CLICK FARM INVESTIGATION

In this section, we give a detailed analysis of the identified click
farms (or fraudulent clusters) from D;.s;. By selecting the largest
click farm and tracing back to datasets in 2018 (D;05) and 2019
(D2019), we perform an in-depth measurement on the click farm.
We introduce our findings and observations, which can help us
have a better understanding of how the click farms perform a large-
scale and synchronized fraudulent campaign. It will also benefit
the community on click farm detection and invalid traffic filtering.

We apply EVILHUNTER to the first day of D;es; (May 16, 2020) to
identify the click farms, which contains 30k fraudulent devices and
30k benign devices. After the 3-stage process, 176 out of a total of
1069 clusters (with more than 5 devices) are flagged as fraudulent
ones. Among 131 clusters consisting of more than 50 devices, 38
clusters are detected as fraudulent.

The largest click farm. We take the largest click farm as an exam-
ple to show the findings on the fraudulent device clusters, which
contains 11,910 devices and 11,910 logs (1 log per device). It is im-
portant to point out that many characteristics are not limited to
this largest click farm; they also widely exist in other click farms.

7.1 Cheating Strategy 1: Using IP Proxies

It is observed that IP proxy is a widely adopted strategy for the
attacker to avoid detection. However, though the attackers can
dynamically change the IP address, they may fail to change their
geo-location information in some cases. This leads to our two find-
ings: 1) Ad bid logs are located in a small region; 2) GPS and IP
geolocations are inconsistent.

Finding 1: The ad bid logs are located in a small region.

Table 6: Statistics of D,y;5 and Djgo.

Field Dao1s D2o19
Date Mar 21-Mar 30, 2018 Mar 6-Mar 15, 2019
Log 289,912,853 63,743,968
IMEI 289,850,470 61,113,865
Android ID 100,001 62,774,356
APP 22 9
1P 778,023 249,494
IP subset 8,615 37,834
Location 42 33
Device brand 15 338
Device model 239 1817

There are 1349 devices in this click farm which created 1349
ad bid logs. We find that the GPS coordinates of these ad bid logs
can be dramatically gathered into a small area with a 1km radius
centered at (xx.64761757174743, xxx.56548085076258). Although
the Location entry may be forged by tech-savvy attackers, there
is no motivation for them to manually set the coordinate to such a
specific area. Thus, we speculate that the fraudulent devices in the
click farm are physically located there. This offers us a chance to
trace back and measure the historical activities of this click farm.

D313 and D;g19. We obtain two datasets spanning over 10 days in
2018 and 2019 respectively, and identify the devices and logs whose
GPS coordinates are associated with this specific region. The two
datasets are described in Table 6. We denote the two datasets as

Dy015 and Dyg19. The two datasets are used throughout this section.

Finding 2: GPS and IP geolocations are inconsistent.

Based on Finding 1, we further compare the GPS coordinates
with the IP geo-localization of the devices in this click farm. We
check the distances between the GPS coordinates (LOC) recorded
in the logs and the locations corresponding to the IPs (LOCpp)
recorded in the logs. First, we use a commercial IP-location query
API [6] to fetch the GPS coordinates of the IPs LOCpp for each
log. Then, we compute the distance between LOC and LOCyp for
each log. The distance distributions of the fraudulent cluster and a
benign cluster are shown in Fig. 8. It is clear that there is a huge gap
between benign clusters and fraudulent clusters in terms of distance
distributions. In the benign clusters, the distances between GPS
coordinates and IP locations are less than 40 km. On the contrary,
over 75% of logs in the click farms have a distance greater than 400
km. This finding will benefit the ad traffic verification industry by
exploiting this feature to identify fraudulent devices.

7.2 Cheating Strategy 2: Rotating IPs and
Forging Device IDs

IP/ID filtering is a widely adopted approach in the ad verification
industry. Changing IP/ID is a widely adopted strategy by attackers
to bypass the detection since traffic verification third parties will
pay more attention to the IPs with inflated traffic.

Finding 3: There is a sophisticated strategy of rotating IP addresses
and forging device IDs.

IP also serves as a physical fingerprint of devices in many fraud
detection methods [29]. Unlike isolated fraudulent devices heavily
relying on IP proxies to change IP, the devices in click farms choose
a more sophisticated strategy to prevent their invalid traffic from
being identified.

1.00 ..(.3..7;..1.‘0.) ...

0.75 (964, 0.75)
o
Q 0.50 e (701,0.5)
0.25 e Click Farm

Benign Device Cluster
0.00

0 250 500 750 1000 1250 1500 1750
Distance (km)

Figure 8: Distance CDF between LOC and LOCyp for a benign
cluster and the cluster of case study.

= ["4.4.2", "5.0.1", "5.1.1", "6.0", "7.0", "7.1.1"
= ["OPPO", "MST", "CUI", "SAMSUNG", "YUS", "ZTE", "HTC", "UMESI",
"DAXIAN", "XIAOMI", "VIVO", "YTSP", "MEIZHU", "HUAWEI"]
= ["M56", "PLUSS", "Y11", "L1", "M7", "N9", "325p", "MS16", "PLUS 6",
"F10", "N11", "NOTE 3", "8US", "TUIP95", "MTS 6", "S672", "P8"]
= ["KTU84P", "JOP4@D", "LMY47X", "LMY48B", "JZ054K", "IDQ39",
"KOT49H", "LRX21V", "JILS36C"
= F"Mozilla/5.0 (Linux; Android [randint() % 6]}; "
£ [randint() % 14] randint() %
FBuild/ randint() % 9]1) "
F"AppleWebKit/537.36 (KHTML, like Gecko) Version/4.8 [Chrome/30.0.0.0]"

f"Mobile Safari/537.36"

Figure 9: User-Agent generation code. The Chrome WebView
version (in red box) is a fixed value while other variant fields
(red lines above) can be generated arbitrarily.

The first strategy is to inflate the IP numbers by randomly chang-
ing the IP addresses within the subnet. Specifically, both D,y and
Dyo19 are associated with a large number of different IP addresses.
However, when zooming in these IP addresses, it is observed that
these massive numbers of IP addresses belong to a limited num-
ber of subnets. For example, for D;;s, it contains 778,023 different
IPs, corresponding to only 8,615 subnets, indicating that each sub-
net contributed to roughly 100 IPs on average. For D;g;9, there are
249,494 IPs belonging to 37,834 subsets, showing that the IP ad-
dresses were scattered across subnets to bypass traffic verification.
However, frequently changing IP will make it highly suspicious
for the generated traffic as well as the corresponding device IDs.
This motivates the click farm to adopt the second strategy: forging
enormous device IDs to reduce the average IP number per device ID.
It is observed that the average IP number per device ID in D;g5 is
less than 1. We also observe that massive devices within the click
farm only generate a single ad bid request. The combination of the
two strategies helps the attackers evade traffic blocking based on
IPs and device IDs.

The aforementioned discussion also largely demonstrates the
vast IP resources available to the click farm operators. Furthermore,
we note that it is unreliable to verify the invalid traffic exclusively
based on IP distributions as recommended by the recent work [29].

Finding 4: The Android IDs have a common prefix.

As discussed before, changing Android IDs is also a strategy
widely adopted by the click farm. This is because: (i) any Android
ID with too many ad bid logs is generally believed to be suspicious;
(ii) changing Android IDs can make the blocking list based invalid
traffic filtering approach fail to work. This strategy has also been
applied to the identified click farm cluster, which involves 100, 001
Android IDs in Dyg;s.

137011552
111%, 12
1o7afen 3k 10 K
A
P

-adabodsfstdossss 41,12
bodsestdsos 41,12
wodsfstdssroo 41 K 12 K
podsfstdoss?s 41 12
bodsfsfassrs 41,12

% ssun sansunc susgl

vise vrse pLusfl e

v

oaxzan paxzan #72 oz

7.1.1; DAXIAN $672 Build/J0PaeD) AppleNebKit/537.36 (KHTHL, 1

Mozilla/5.0 (Linux; Android 7.1.1; SAMSUNG 8US Build/LRX21V) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.8 Chrome/30.0.0.0 Mobile Safari/537.36

Figure 10: An example of the UA generated by this click farm.

Surprisingly, we find that in 2018, 100,000 out of 100,001 Android
IDs show a common pattern: they are the MD5 values of a determi-
nate string s = s1||s2, where s; = “ad4b0d3f5fd” and s, =“00000,. . .,
“99999”; the only exception is IDy = “ad4b0d3f5fdacd9b”. It is de-
rived that IDy is the Android ID of a real device, and all other
Android IDs were created by changing the last 5 digits of it and
computing the MD5 values. We confirmed this by looking into the
locations recorded in the logs, which showed that these devices
were in close proximity to each other. After discussing with Com-
pany A, one possible explanation is that the attackers intentionally
used this unique Android ID prefix in 2018 as a piece of evidence to
request payment from the fraudulent publisher who endorses them
to launch the ad fraud campaign. However, in 2019, the Android
IDs did not exhibit such a pattern, indicating that the strategies
adopted by the attackers have evolved.

7.3 Cheating Strategy 3: Forging User Agents

User-Agent also includes much critical end-device system informa-
tion (e.g., Android version, device brand, build code, browser kernel
version), which can be exploited to fingerprint the fraudulent de-
vices. This observation drives the click farm devices to generate fake
UA fields to conceal their real system information through modi-
fying system configuration files, “/system/build.prop” [43], and
thus bypass the detection. As the first step towards understanding
how to generate the fake UAs, we try to simulate fake User-Agent
generation in Python to enumerate all possible combinations of
UAs, as shown in Fig. 9. The attackers select items from predefined
small sets for the 4 fields (Android version, device brand, device
type, and build code [2]) to conceal their critical system information
and avoid being blocked.

Finding 5: 3 types of UA fraud are identified.

We then perform a comprehensive analysis of the UA fields of
fraudulent devices in Dyg;5 and Dyg19. We have detected the follow-
ing three UA frauds due to inconsistencies of the fields, which can
help us combat fraudulent devices in the future. In the following,
we use a real-world UA as an example, which was generated at
2:22:50 AM on March 23, 2018. As shown in Fig. 10, the Android
version is 7.1.1, the device brand is “SAMSUNG?”, the device type is
“8US”, and the build code is “LRX21V”.

1) Chrome WebView vs. Android version. Chrome WebView is an
embedded edition of Chrome browser as a non-degradable system
component in each version of the Android system. The version
(30.0.0.0) was born with Android 4.4 [1] and the updated WebView
shipped with Android 4.4.3 has version number 33.0.0.0. It is indi-
cated in [1] that WebView will auto-update for mobile devices with
Android L (Android 5.0) and above. In other words, a new Android
version with an old Chrome WebView version is highly suspicious.
This serves as a strong indicator to identify the fraudulent devices
by checking the inconsistency of UA and Android versions. In the
example of click farm UA, Android 7.1.1 corresponds to WebView

Log

® D D P
g

O R R ® O N DD
A S G L L A A M g 5 S ST N N N LN Y LY
I IS F & A N A RN

(a) 2018 (b) 2019
Figure 11: Log number proportions of the apps in 2018 and
2019. For each day, the height of the dashed lines separated
by different colors represents the log numbers belonging to
different apps. There are no overlapping apps between two
years.

version 52.0.2743.100, which is inconsistent with the old WebView
version 30.0.0.0 (Fig. 10).

2) Device brand vs. device type. The second observation is that the
device brand and type fields in the click farm UAs are randomly
generated, which leads to non-existent device brand/type pairs,
such as “SAMSUNG 8US” in the example click farm UA showed in
Fig. 10. Importantly, we ascertain that, in the identified click farms,
most of the UA fields are evidenced to be forged, such as “HTC
M56”, “DAXIAN Y11”, “UMESI 325p”.

3) Android version vs. build code. Android version and build code
are in a one-to-many relationship, which can be used to check
the forged UAs. In the UA example above, “LRX21V” is the build
code for “android-5.0.0_r7” according to the list [2], which falsely
combines with the Android version of 7.1.1.

In summary, UA provides a plethora of useful information to
determine the nature of a device to be either benign or fraudulent.

7.4 Cheating Strategy 4: Rotating Apps

To avoid massive ad bid requests targeting only one app and being
banned by the ad platform, the fraudsters have developed dozens
of apps and dynamically changed the apps to run the ad campaign,
which will provide economic incentives for the fraudsters.

Finding 6: The apps are uniformly rotated after 3~4 days.

We investigate the proportion of log numbers for 18 apps in-
volved (9 selected apps in 2018 and all the 9 apps in 2019) and plot
their transition flows, which are shown in Fig. 11a and Fig. 11b.
It is observed that click farms do not generate invalid traffic for
a fixed app. Instead, ad spam campaigns have been intentionally
launched on different apps from one to another. It regularly takes a
certain period to run the ad spam campaign (or rotating period) for
each app. Averagely, the length of the period is about 3~5 days. For
example, 2 apps were activated on March 21, 2018, and deactivated
3 days later, meanwhile, 3 new apps were activated on March 23,
2018. The remaining 13 apps in 2018 and all the 9 apps in 2019
show the same characteristics. We checked the Android app market

and, interestingly, all of these apps were developed by the common
developer. After our manual check, all of these apps do not have
any special or practical functionality. It is reasonable to assume that
the only purpose of these apps is to run the ad spam campaign. This
is also supported by another fact that these apps have not received
any updates since being published on the market.

We also apply EVILHUNTER to the full datasets containing D;1s,
to investigate how invalid traffic impacts top 50 apps in the 10-day
dataset of 2018 (Appendix C).

8 REAL-WORLD DEPLOYMENT

In this section, we will discuss how to implement EVILHUNTER in
real-world applications. As we mentioned in the introduction, in
the industry, the major challenge comes from how to address the
massive data (e.g., over 50M devices and 100M logs per day) in a
reasonable period (e.g., less than 1 day for daily clearance). We pro-
pose several techniques to speed up the execution of EVILHUNTER,
in order to support the verification of billions of ad bid requests in
an industrial environment. After applying optimization, we apply
EVILHUNTER to an in-the-wild dataset D;g; and compare the result
with state-of-the-art industry methods. The acknowledgments from
our industrial collaborator show that EVILHUNTER can complement
existing industry methods, and is practical to be used in real-world
scenarios.

8.1 System Optimization

In the traffic verification industry, it is required to process and detect
invalid traffic on a daily basis. Thus, the time cost of processing
daily data should be within several hours. In the implementation of
Stage 2, a naive method is to compute similarities between each pair
of devices and then construct a complete graph. However, such a
pair-wise comparison suffers from the scalability issue. Considering
hundreds of millions of active devices in the advertising system
every day, if we are going to apply the naive method, we need to
perform O(10') computation to construct the whole graph, which
is unacceptable in practice.

8.1.1 Optimization techniques. In the following, we propose
three optimization techniques corresponding to the three steps in
stage 2 to address the computation challenges.

1) Merging devices. In Module 2.1 Top-App Extractor, since all devices
are represented by their top-app features, we can naturally put the
focus on distinct features instead of distinct devices. It is observed
that in Djgz0, only a very small proportion of devices (0.25%) have
different labels but share the same top-app features. Meanwhile,
the number of distinct features is much smaller than the number
of devices (<0.5%). To utilize this characteristic, we merge devices
with the same feature into a single vertex.

For example, suppose two devices id=bed4f2. . . and id=beed4c. ..

have the same top-app features: {’e16f25bd’ : 1} (i.e., one ad bid log
for app id e16f25bd); then we combine the two devices and other
devices with the same feature as one single vertex, indexed by a
unique vertex id. In this way, the vertex number in our graph is
significantly reduced, while it does not impact the correctness of
the final result. As in D21, there are 53M devices, which can be
merged into 0.25M vertices. The compression rate is over 200x. The

1.0
105, 0.94)
0.8
L 06
a
O o4
0.2 Diff. Top App
—— Same Top A
00 P App
0.0 0.2 0.4 0.6 0.8 1.0

Similarity

Figure 12: The CDF of pair-wise device similarities.

pairwise similarity computational time complexity can be decreased
from 0(10%°) to 0(10'?).

2) Pruning in similarity computation. While merging devices can
decrease the number of vertices to compute, we also find in Module
2.2 Device Graph Constructor that many pair-wise similarity com-
putations are not necessary. Since we only build edges between
vertices with high similarities (> 0.5), we can omit many similarity
computations if the estimated similarity is small (i.e., < 0.5). Recall
that we use cosine similarity in our computation. If two vertices
have different top-1 apps, then the cosine similarity is very likely
to be lower than 0.5. In that case, it is unnecessary to compute the
similarity, since it is too small to add an edge between them.

Fig. 12 shows the distribution of similarities between randomly
sampled 10,000 device pairs, half of which have different top-1 apps
while the other half have identical top-1 apps. The curve in orange
shows that there are over 94% of the vertex pairs with different
top-1 apps whose similarities are less than 0.5. The computation
of such similarities is unnecessary for the subsequent steps. Thus,
we only perform similarity computations between two vertices if
they share the same top-1 app. In practice, this pruning method
can eliminate over 99.7% of the operation each day. Note that this
pruning process may influence the detection results since it will
result in different device graphs.

3) Dividing graphs for parallel computing. Unfortunately, the com-
plexity of the community detection algorithm (Louvain method) in
Module 3.1 Community Detector is O(nlogzn), which is not efficient
enough for large-scale applications. Therefore, we need to find
ways to speed up the computation. The input of Community Detector
is all the vertices and edges. It is observed that in a large graph,
the results of disconnected sub-graphs do not influence each other.
We make use of this and divide the problem into sub-problems,
and solve them in parallel to increase efficiency. After pruning in
similarity computation, the result is a collection of graphs. First, we
separate the graphs into groups that have the same top-1 app: each
group contains multiple graphs, and all the nodes in graphs of the
same group have the same top-1 app. Then, we process the groups
in parallel, since there is no dependency among them. Finally, we
collect the community detection results from all the groups. This
helps us to reduce the processing time from over 48 hours to 40
minutes in daily data processing.

8.1.2 Evaluation after optimization. We study how the opti-
mization improves the performance of EVILHUNTER, and how it
impacts the correctness of EVILHUNTER.

1) Performance improvement. We evaluate the performance of EvIL-
HUNTER prior to and post-optimization using D21, which con-
tains 1-day data (53M devices and 117M logs) in 2021. Stage 1 takes
roughly 10 minutes; Stage 3 takes 30 seconds. For Stage 2, Module
2.1 Top-App Extractor takes 4 minutes. For Module 2.2 Device Graph
Constructor and Module 2.3 Community Detector, before optimiza-
tion, each of them cannot terminate within 48 hours, respectively;
after optimization, they are able to produce results after 48 minutes
and 40 minutes, respectively. Therefore, EVILHUNTER can process
1-day’s data within 2 hours after optimization, which meets the
practical requirement for daily execution. The performance speedup
is more than 28x.

2) Correctness. We also evaluate the potential impact of the optimiza-
tion with regard to correctness. We randomly select 1,000 vertices
(including 21,191 devices) from D;gy; and apply EVILHUNTER prior
to and post-optimization. The final detection results show that
there are only 48 devices (0.22%) with different labels. Therefore,
the optimization steps increase the system efficiency by more than
28x, while incurring little loss (0.22%) on the potential correctness,
which is acceptable.

8.2 Result Validation

By following the IVT Detection and Filtration Standard [24], indus-
try leaders develop their own detection systems to detect several
known types of invalid traffic. The different types of invalid traffic
are labeled by different fraud reason codes. To date, there is no spe-
cific fraud reason code for detecting click farms, which is the major
advantage of EVILHUNTER. We deploy EVILHUNTER on 1-day’s real-
world ad traffic data in order to test the practicality of EVILHUNTER.

Dataset. We use the ad bid logs in one day (Jan 13, 2021) collected
from the real world as our dataset D2gy1. This dataset contains 53M
devices and 117M logs in total.

Results. EVILHUNTER detects around 8 million (15%) fraudulent
devices out of totally 53 million active devices in Djg21. These
devices generate 37 million (31%) fake bid requests. After Stage 3,
there are 23,604 clusters, wherein 5,164 clusters have more than 50
devices, and 491 of them are fraudulent clusters.

Comparison with the detection results of Company A. Since
there is no existing industrial system targeting click farm detec-
tion, here we use the detection result of the industrial system of
Company A, to compare and analyze our result. We find that 93%
of the detected invalid traffic by EVILHUNTER is not detected by
Company A’s existing detection system. This undetected invalid
traffic is originated from click farms. We have manually checked
the top 30 click farms containing 5,941,433 devices in total, which
contribute to more than 74% of the detected fraudulent devices.
We find similar cheating strategies from them as revealed in Sec. 7.
Among the 30 click farms, there are 9 click farms that only use IPs
from small centralized areas, which contain 329,287 devices (5.5%)
in total; there are 14 click farms (3,434,208 devices, 57.8%) rotating
IPs and device IDs to evade IP/ID filtering. Note that there are 4 click
farms (299,186 devices, 5.0%) that use both two strategies. These
19 click farms are confirmed by Company A, who has adopted our
proposed algorithm as a new fraud reason code in their platform.

We also investigate the other 11 detected fraudulent device clus-
ters. Among them, there are potentially 5 falsely detected clusters:
1) 4 of them contain only Android TV devices, which exhibit differ-
ent behaviors from Android phones; 2) another cluster has different
UA fields compared to the normal ones. These UAs are from true
Android devices but start with specific values (e.g., bundle ID) in-
stead of Mozilla or Dalvik. So they are flagged by EVILHUNTER.
There remain 6 detected device clusters whose cheating patterns
are not so obvious. They are expected to be double-checked by
Company A using auxiliary information.

Consensus with other companies. In addition, we have reported
the device IDs and IPs of the detected click farms to the blockchain-
based consensus system. They are expected to be cross-checked by
other companies in the future.

9 DISCUSSION

EviLHUNTER update. To deploy EVILHUNTER and ensure that it
captures state-of-the-art ad fraud, we need to periodically collect
new ground truth data and retrain the Stage 1 classifier of EviL-
HunNTER. This can be achieved by integrating EvILHUNTER with an
active learning approach. For example, we can periodically collect
the prediction results of new devices and reuse them with two op-
tions: 1) For the devices with high prediction confidence, we can
directly use them as the training dataset to retrain the classifica-
tion model. 2) For the other devices with low confidence, we can
manually label the devices using auxiliary information or other
existing tools. We show a simplified update process using Dz
in Appendix B to demonstrate the practicality and effectiveness of
updating EVILHUNTER per week.

Impact of privacy regulations. To enhance privacy and adhere
to General Data Protection Regulation (GDPR), more fields of the
ad transaction data are expected to be encrypted or removed, ren-
dering the traffic verification to be more challenging due to a lack
of necessary data. However, we argue that completely removing
all fields of the ad data is less likely to happen in the near future
because it challenges the current user profile based Internet ad
ecosystem. Therefore, it is desirable to have a more strict data au-
thorization and access control and limit the data to a small number
of highly qualified traffic verification companies and their trusted
research partners. We also attempt to investigate differentially pri-
vate programmatic ad auctions and this deserves separate research.

Open-source datasets. We are in the process of negotiation with
our industrial collaborator to release the datasets used in the paper.
Once approved, we will release the ad bid logs of fraudulent devices
to facilitate future research.

Limitations. EVILHUNTER shows a good performance in detect-
ing fraudulent devices generating invalid traffic, but EVILHUNTER
mainly focuses on performing the traffic analysis towards the ad
bid network; there might exist approaches that can perfectly mimic
the traffic originating from the benign devices, which can be used
to evade our detection. However, in order to create such “perfect”
invalid traffic, the attackers need to invest a significant amount of
resources to make all features undetectable, which makes it hard
to make a profit. It is important to note that the effectiveness of
EvILHUNTER can be further improved if we combine it with other

ad fraud mitigation techniques, such as traffic authentication, hon-
eypots, and dynamic fraud testing.

Additionally, EVILHUNTER can only be used to detect fraudulent
Android devices. Detecting fraudulent devices running iOS is hard
for two reasons: 1) Apple has restricted the IDFA permission since
i0S 14, which makes it harder to uniquely trace an iOS device in
the ad ecosystem; 2) the invalid traffic samples originated from iOS
devices are relatively small, due to the difficulty of jail-breaking
and hijacking iOS devices. We leave a thorough study of invalid
traffic from iOS devices as our future work.

10 RELATED WORK

Ad fraud measurement and detection. Over the past few years,
click spam has been extensively studied in the context of web adver-
tising, mobile advertising, and search advertising. The research [30]
proposed the characterization of one of the largest click fraud bot-
nets. Researchers also proposed several types of design and analysis
of click spam threats [10, 11, 16, 39, 41]. To defend against click
spam, many approaches have been proposed to avoid or detect click
spam in advertising [13, 14, 17, 27, 38, 40, 45]. Springborn et al. [37]
leveraged traffic collected from honeypot websites to identify and
analyze a new type of ad fraud, called pay-per-view (PPV) networks.
They examined the click spam issue as well. However, we high-
light that the industry focus, driven by advertising monetization,
has been shifted from click spamming to invalid traffic-enabled
coordinated attacks.

To the best of our knowledge, there is only one recent study inves-
tigating invalid traffic [29]. The researchers designed a confidence
score for each domain, based on the IP entropy. The confidence
score offered for each app domain is useful for DSP to determine
how to treat the upcoming bid requests. However, this method
cannot ascertain what session of ad traffic is invalid; neither can
be used to measure the ad traffic at a finer granularity. Instead, the
methodology developed in this paper is able to identify the sources
of invalid traffic (i.e., fraudulent devices).

System-level ad fraud prevention. Some researchers proposed
authentication-based methods to eliminate fraudulent activities in
advertising. For example, Juels et al. [21] proposed an authentication
method to validate benign users. In [15] and [36], researchers used
HMAC-based signatures to check ad click fraud. Li et al. [23] used
TrustZone to verify ad clicks and display. However, these solutions
rely on the client side’s ability to detect anomalies and thus have
reduced scalability.

To prevent various types of counterfeit inventories across the
advertising ecosystem, by boosting transparency in the supply
chain, Interactive Advertising Bureau (IAB) Tech Lab launched the
authorized digital sellers (ads.txt) project [18]. The project is aimed
at publishers and distributors to declare who is authorized to sell
their inventory. Furthermore, there are several extended versions
of ads.txt, including app-ads.txt [19] and ads.cert [20] to extend
to more scenarios. Recently, Pastor et al. [28] proposed another
extended version, called ads.chain, to resolve the limitations of the
previous protocols. However, all of those solutions are designed to
increase the transparency in the ecosystem, which is orthogonal to
invalid traffic detection proposed in this paper.

11 CONCLUSION

In this paper, we first conduct a measurement study on a labeled
ad fraud dataset to distinguish the nature of mobile devices either
fraudulent or benign through feature engineering. We then propose
and develop EVILHUNTER, the first mobile ad fraud detection system
based on ad bid request logs, which can identify fraudulent devices
with high accuracy and automatically identify fraudulent clusters.
We reveal several cheating strategies adopted by click farms based
on the results of EVILHUNTER. We further deploy optimized EviL-
HUNTER on a 1-day’s real-world dataset, which demonstrates its
practicality. The results and findings developed in this paper have
been acknowledged, and the proposed EviLHUNTER will be inte-
grated into the platform of our industry partner, a leading ad traffic
verification company (Company A), to combat the current burgeon-
ing mobile ad fraud.

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their constructive
feedback. We also thank RTBAsia and China Advertising Associa-
tion for the long term support. The authors affiliated with Shang-
hai Jiao Tong University were, in part, supported by the National
Natural Science Foundation of China under Grants 61972453 and
62132013. Xiaokuan Zhang was supported in part by the Norton-
LifeLock Research Group Graduate Fellowship. Minhui Xue was,
in part, supported by the Australian Research Council (ARC) Dis-
covery Project (DP210102670) and the Research Center for Cyber
Security at Tel Aviv University established by the State of Israel,
the Prime Minister’s Office and Tel Aviv University.

REFERENCES

[1] 2015. WebView for Android. https://developer.chrome.com/multidevice/

webview/overview.

[2] 2020. Codenames, Tags, and Build Numbers. https://source.android.com/setup/

start/build-numbers. (Accessed on 09/02/2020).

] 2020. Integral Ad Science. https://integralads.com/.

[4] 2020. Oracle Data Cloud. https://www.oracle.com/data-cloud/.

] 2020. White Ops. https://www.whiteops.com/.

] 2021. IP-APLcom - Geolocation APIL https://ip-api.com/. (Accessed on

01/21/2021).

[7] Apple. 2021. Upcoming AppTrackingTransparency requirements. https://
developer.apple.com/news/?id=ecvrtzt2. (Accessed on 04/21/2021).

[8] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment 2008, 10 (2008), P10008. https:
//doi.org/10.1088/1742-5468/2008/10/p10008

[9] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for sup-
port vector machines. ACM Transactions on Intelligent Systems and Technol-
ogy (2011). https://doi.org/10.1145/1961189.1961199 Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[10] Geumhwan Cho, Junsung Cho, Youngbae Song, Donghyun Choi, and Hyoung-
shick Kim. 2016. Combating online fraud attacks in mobile-based advertising.
EURASIP Journal on Information Security 2016 (2016). https://doi.org/10.1186/
513635-015-0027-7

[11] Geumhwan Cho, Junsung Cho, Youngbae Song, and Hyoungshick Kim. 2015.

An empirical study of click fraud in mobile advertising networks. In 2015 10th

International Conference on Availability, Reliability and Security. 382-388. https:

//doi.org/10.1109/ARES.2015.62

CNBC. 2017. Businesses could lose $16.4 billion to online advert fraud in

2017. https://www.cnbc.com/2017/03/15/businesses-could-lose-164-billion- to-

online-advert-fraud-in-2017.html. (Accessed on 08/08/2020).

[13] Vacha Dave, Saikat Guha, and Yin Zhang. 2012. Measuring and fingerprinting
click-spam in ad networks. In Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer communi-
cation. 175-186. https://doi.org/10.1145/2342356.2342394

[14] Vacha Dave, Saikat Guha, and Yin Zhang. 2013. ViceROI: Catching click-spam
in search ad networks. In Proceedings of the 2013 ACM SIGSAC conference on

=
&N

https://developer.chrome.com/multidevice/webview/overview
https://developer.chrome.com/multidevice/webview/overview
https://source.android.com/setup/start/build-numbers
https://source.android.com/setup/start/build-numbers
https://integralads.com/
https://www.oracle.com/data-cloud/
https://www.whiteops.com/
https://ip-api.com/
https://developer.apple.com/news/?id=ecvrtzt2
https://developer.apple.com/news/?id=ecvrtzt2
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1145/1961189.1961199
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1186/s13635-015-0027-7
https://doi.org/10.1186/s13635-015-0027-7
https://doi.org/10.1109/ARES.2015.62
https://doi.org/10.1109/ARES.2015.62
https://www.cnbc.com/2017/03/15/businesses-could-lose-164-billion-to-online-advert-fraud-in-2017.html
https://www.cnbc.com/2017/03/15/businesses-could-lose-164-billion-to-online-advert-fraud-in-2017.html
https://doi.org/10.1145/2342356.2342394

[15]

[16]

[17

(18]

[23

[24

[25

[26]

[
=

[28]

[29

[30]

w
—

[32

@
o

[34]

[35

[36]

Computer & Communications Security (CCS °13). 765-776. https://doi.org/10.1145/
2508859.2516688

Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S Wallach.
2011. QUIRE: Lightweight provenance for smart phone operating systems. In
20th USENIX Security Symposium (USENIX Security 11).

Google, White Ops. 2018. The Hunt for 3ve, Taking down a major ad fraud
operation through industry collaboration. https://services.google.com/fh/files/
blogs/3ve_google_whiteops_whitepaper_final_nov_2018.pdf.

Hamed Haddadi. 2010. Fighting Online Click-Fraud Using Bluff Ads. SIG-
COMM Comput. Commun. Rev. 40, 2 (April 2010), 21-25. https://doi.org/10.1145/
1764873.1764877

IAB Tech Lab. 2019. IAB OpenRTB Ads.txt Public Specification Ver-
sion 1.0.2. https://iabtechlab.com/wp-content/uploads/2019/03/IAB-OpenRTB-
Ads.txt-Public-Spec-1.0.2.pdf. (Accessed on 08/30/2020).

IAB Tech Lab. 2019. IAB Tech Lab Authorized Sellers for Apps (app-ads.txt). https:
//iabtechlab.com/wp-content/uploads/2019/03/app-ads.txt-v1.0-final-.pdf. (Ac-
cessed on 08/30/2020).

IAB Tech Lab. 2020. OpenRTB, Specification Version 3.0.

Ari Juels, Sid Stamm, and Markus Jakobsson. 2007. Combating click fraud via
premium clicks. In 16th USENIX Security Symposium (USENIX Security 07).
Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting decision
tree. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS’17). 3149-3157.

Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia. 2015. AdAttester: Secure
online mobile advertisement attestation using TrustZone. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys ’15). https://doi.org/10.1145/2742647.2742676

Media Rating Council. 2020. Invalid Traffic Detection and Filtration Stan-
dards Addendum. http://mediaratingcouncil.org/MRC%20Invalid%20Traffic%
20Detection%20and%20Filtration.pdf. (Accessed on 07/18/2020).

Xianghang Mi, Xuan Feng, Xiaojing Liao, Baojun Liu, XiaoFeng Wang, Feng
Qian, Zhou Li, Sumayah Alrwais, Limin Sun, and Ying Liu. 2019. Resident evil:
Understanding residential IP proxy as a dark service. In 2019 IEEE Symposium on
Security and Privacy (SP). 1185-1201. https://doi.org/10.1109/SP.2019.00011
Mirror. 2017. The bizarre ‘click farm’ of 10,000 phones that give FAKE ‘likes’
to our most-loved apps. https://www.mirror.co.uk/news/world-news/bizarre-
click-farm-10000-phones-10419403. (Accessed on 08/26/2020).

Richard Oentaryo, Ee-Peng Lim, Michael Finegold, David Lo, Feida Zhu, Clifton
Phua, Eng-Yeow Cheu, Ghim-Eng Yap, Kelvin Sim, Minh Nhut Nguyen, Kasun
Perera, Bijay Neupane, Mustafa Faisal, Zeyar Aung, Wei Lee Woon, Wei Chen,
Dhaval Patel, and Daniel Berrar. 2014. Detecting click fraud in online advertising:
A data mining approach. Journal of Machine Learning Research 15 (2014), 99-140.
Antonio Pastor, Rubén Cuevas, Angel Cuevas, and Arturo Azcorra. 2021. Estab-
lishing Trust in Online Advertising With Signed Transactions. IEEE Access 9
(2021), 2401-2414. https://doi.org/10.1109/ACCESS.2020.3047343

Antonio Pastor, Matti Pérssinen, Patricia Callejo, Pelayo Vallina, Rubén Cuevas,
Angel Cuevas, Mikko Kotila, and Arturo Azcorra. 2019. Nameles: An intelligent
system for Real-Time Filtering of Invalid Ad Traffic. In The World Wide Web
Conference (WWW ’19). 1454-1464.

Paul Pearce, Vacha Dave, Chris Grier, Kirill Levchenko, Saikat Guha, Damon
McCoy, Vern Paxson, Stefan Savage, and Geoffrey M Voelker. 2014. Characterizing
large-scale click fraud in ZeroAccess. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14). 141-152. https:
//doi.org/10.1145/2660267.2660369

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12 (2011),
2825-2830.

PPC Protect. 2019. What Is a Click Farm? The Quick Way to Thousands of Likes.
https://ppcprotect.com/what-is-a-click-farm/. (Accessed on 08/26/2020).
Research and Markets. 2019. Worldwide Analysis on the Real-time Bidding
Market, 2019 to 2024 - Anticipated to Record a CAGR of 32.9% During the
Forecast Period. https://www.prnewswire.com/news-releases/worldwide-
analysis-on-the-real-time-bidding-market-2019-to-2024---anticipated- to-
record-a-cagr-of-32-9-during-the-forecast-period-300811841.html. (Accessed
on 07/21/2020).

Neil Rubens, Mehdi Elahi, Masashi Sugiyama, and Dain Kaplan. 2015. Active
Learning in Recommender Systems. Springer US, Boston, MA, 809-846.

Burr Settles. 2010. Active Learning Literature Survey. University of Wisconsin,
Madison 52 (07 2010).

Shashi Shekhar, Michael Dietz, and Dan S Wallach. 2012. AdSplit: Separating
smartphone advertising from applications. In 21st USENIX Security Symposium
(USENIX Security 12). 553-567.

[37] Kevin Springborn and Paul Barford. 2013. Impression fraud in on-line advertising
via pay-per-view networks. In 22nd USENIX Security Symposium (USENIX Security
13). 211-226.

Ori Stitelman, Claudia Perlich, Brian Dalessandro, Rod Hook, Troy Raeder, and
Foster Provost. 2013. Using co-visitation networks for detecting large scale online
display advertising exchange fraud. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’13).
1240-1248. https://doi.org/10.1145/2487575.2488207

Brett Stone-Gross, Ryan Stevens, Apostolis Zarras, Richard Kemmerer, Chris
Kruegel, and Giovanni Vigna. 2011. Understanding fraudulent activities in on-
line ad exchanges. In Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference (IMC ’11). 279-294. https://doi.org/10.1145/
2068816.2068843

Tian Tian, Jun Zhu, Fen Xia, Xin Zhuang, and Tong Zhang. 2015. Crowd fraud
detection in internet advertising. In Proceedings of the 24th International Con-
ference on World Wide Web (WWW °15). 1100-1110. https://doi.org/10.1145/
2736277.2741136

Elliott Wen, Jiannong Cao, Jiaxing Shen, and Xuefeng Liu. 2018. Fraus: Launching
cost-efficient and scalable mobile click fraud has never been so easy. In 2018
IEEE Conference on Communications and Network Security (CNS). 1-9. https:
//doi.org/10.1109/CNS.2018.8433126

White Ops and ANA. 2019. 2018-2019 Bot Baseline: Fraud in Digital Advertising.
https://www.ana.net/miccontent/show/id/rr-2019-bot-baseline. (Accessed on
07/29/2020).

Songyang Wu, Wengi Sun, Xin Liu, and Yong Zhang. 2018. Forensics on Twitter
and WeChat using a customised android emulator. In 2018 IEEE 4th International
Conference on Computer and Communications (ICCC). 602-608. https://doi.org/
10.1109/CompComm.2018.8781056

[44] XDA Developers. 2018. Huawei will stop providing bootloader unlocking
for all new devices. https://www.xda-developers.com/huawei-stop-providing-
bootloader-unlock-codes/. (Accessed on 09/03/2020).

Haitao Xu, Daiping Liu, Aaron Koehl, Haining Wang, and Angelos Stavrou. 2014.
Click fraud detection on the advertiser side. In European Symposium on Research
in Computer Security (ESORICS 2014). 419-438.

Haizhong Zheng, Minhui Xue, Hao Lu, Shuang Hao, Haojin Zhu, Xiaohui Liang,
and Keith W. Ross. 2018. Smoke screener or straight shooter: Detecting elite sybil
attacks in user-review social networks. In Proceedings of 25th Annual Network
and Distributed System Security Symposium, NDSS.

[38

[39

[40

[41

[42

=
&

[45

[46

APPENDIX
A SENSITIVITY OF PARAMETERS

We evaluate the sensitivity of parameter settings of EVILHUNTER
(Sec. 6.1, Table 4). The parameters are listed in Table 4. We start
from an initial setting (5 = 5,Simp, = 0.5,5;p, = 0.5, = 107%)
and change one parameter at a time to find the best parameter
settings. All the experiments are conducted 5 times, and we report
the mean values in this section. Note that the standard deviations
are very small (<1%) in all the experiments.

1. We have found that does not impact the final result too much
(in Fig. 13). Meanwhile, the larger 5 is, the longer the total time cost
will be. However, we cannot simply choose the minimum value (1)
for : much information would be discarded if we only keep the
top-1 app. Here we define the loss(k) as the ratio of discarded ad bid
logs compared to n = co when setting = k. As shown in Fig. 13,
there is a tradeoff between loss and the time cost when 7 increases;
loss is decreased to 0.4% when 1 = 5. Therefore, we choose = 5 as
the optimal setting.

Sim;p,. Similar to 5, we also find that Sim;p, has little effect on
the accuracy (Fig. 14). Recall that the main goal of Sim,, is to drop
edges with low weight. The value of it has a huge impact on the
clustering result: if a large Sim;p, (e.g., 0.9) is chosen, many edges
with a lower weight will be deleted, which will lower the size of
individual clusters. Therefore, we evaluate the number of devices
(num) in the biggest cluster using different Sim;j, to make sure
that a reasonable Sim,p, is chosen. The result in Fig. 14 shows that

https://doi.org/10.1145/2508859.2516688
https://doi.org/10.1145/2508859.2516688
https://services.google.com/fh/files/blogs/3ve_google_whiteops_whitepaper_final_nov_2018.pdf
https://services.google.com/fh/files/blogs/3ve_google_whiteops_whitepaper_final_nov_2018.pdf
https://doi.org/10.1145/1764873.1764877
https://doi.org/10.1145/1764873.1764877
https://iabtechlab.com/wp-content/uploads/2019/03/IAB-OpenRTB-Ads.txt-Public-Spec-1.0.2.pdf
https://iabtechlab.com/wp-content/uploads/2019/03/IAB-OpenRTB-Ads.txt-Public-Spec-1.0.2.pdf
https://iabtechlab.com/wp-content/uploads/2019/03/app-ads.txt-v1.0-final-.pdf
https://iabtechlab.com/wp-content/uploads/2019/03/app-ads.txt-v1.0-final-.pdf
https://doi.org/10.1145/2742647.2742676
http://mediaratingcouncil.org/MRC%20Invalid%20Traffic%20Detection%20and%20Filtration.pdf
http://mediaratingcouncil.org/MRC%20Invalid%20Traffic%20Detection%20and%20Filtration.pdf
https://doi.org/10.1109/SP.2019.00011
https://www.mirror.co.uk/news/world-news/bizarre-click-farm-10000-phones-10419403
https://www.mirror.co.uk/news/world-news/bizarre-click-farm-10000-phones-10419403
https://doi.org/10.1109/ACCESS.2020.3047343
https://doi.org/10.1145/2660267.2660369
https://doi.org/10.1145/2660267.2660369
https://ppcprotect.com/what-is-a-click-farm/
https://www.prnewswire.com/news-releases/worldwide-analysis-on-the-real-time-bidding-market-2019-to-2024---anticipated-to-record-a-cagr-of-32-9-during-the-forecast-period-300811841.html
https://www.prnewswire.com/news-releases/worldwide-analysis-on-the-real-time-bidding-market-2019-to-2024---anticipated-to-record-a-cagr-of-32-9-during-the-forecast-period-300811841.html
https://www.prnewswire.com/news-releases/worldwide-analysis-on-the-real-time-bidding-market-2019-to-2024---anticipated-to-record-a-cagr-of-32-9-during-the-forecast-period-300811841.html
https://doi.org/10.1145/2487575.2488207
https://doi.org/10.1145/2068816.2068843
https://doi.org/10.1145/2068816.2068843
https://doi.org/10.1145/2736277.2741136
https://doi.org/10.1145/2736277.2741136
https://doi.org/10.1109/CNS.2018.8433126
https://doi.org/10.1109/CNS.2018.8433126
https://www.ana.net/miccontent/show/id/rr-2019-bot-baseline
https://doi.org/10.1109/CompComm.2018.8781056
https://doi.org/10.1109/CompComm.2018.8781056
https://www.xda-developers.com/huawei-stop-providing-bootloader-unlock-codes/
https://www.xda-developers.com/huawei-stop-providing-bootloader-unlock-codes/

—e— Time cost | 0.15 &
—4— Loss S
4 Accuracy
—&— Precision

N —< Recall

—
———4————4— | 0.00

1 2 3 4 5 6 7 8 9 10
Top app number n

Figure 13: n Experiment

o o o o =
© ® © © o
g & 8 & 8
Accuracy / Precision / Recall

e
S
el

1800

—8— Time cost
—4— num
Accuracy
—4— Precision
—— Recall

1700 €
3

1600

1500
00 01 02 03 04 05 06 07 08 09

Similarity Threshold Simy-

Figure 14: Sim;;, Experiment

°
3

°
©
&

°
©
S

o
©
&

o
@
3

300

p————

- 200
150 . -
—e— Time cost

100 Accuracy

—&— Precision

—*— Recall

Time (s}

50

Accuracy / Precision / Recall

01 02 03 04 05 06 07 08 09
Fraudulent Cluster Score Threshold sy,

Figure 15: s5;5,, Experiment

=

o

3
al

° °
P o
& &
Accuracy / Precision / Recall

o
©
3

o
@
3

0.75

300

°
©
o

250

T

o

9]

@

=

s

G 0.90 200 5
o o
pud 150 £
& £
~ 085 1 Time cost =
oy Z3 Accuracy [100
£ 0.80 3 Precision | 5

3 0= Recall

< 0.75 T T T T T T T e 0

o le-4 5e-4 1le-3 5e-3 le2 5e-2 lel 5el 1
Cluster Size Proportion Threshold a

Figure 16: « Experiment

once Simyp, >= 0.7, num starts to decrease, which means the clus-
tering result is negatively impacted by Sim,p,.. Moreover, the time
cost starts to decrease when Sim;p, >= 0.2; it plateaus between
Simp, = 0.5 and Sim;p, = 0.6. Based on the above observations,
we choose Sim;p, = 0.5.

S;pr and a. We use similar methods to choose the best values
of s;, and a. Because they are only involved in the aggregation
stage (Stage 3), their impact on the time cost is negligible. When
Shr increases, the accuracy and precision increase while the recall
drops (Fig. 15). s;p, = 0.3 is the turning point, so we choose s;, =
0.3 as our setting. For a (Fig. 16), when « increases, accuracy and
precision first increase until « reaches 1073, then decrease after
that. Meanwhile, recall drops slowly all the time. Therefore, we
choose a = 1073.

Summary. Based on our evaluation, we use (5 = 5,Sim, =
0.5, 55 = 0.3, = 1073) as the optimal settings, and use the set-
tings in the paper.

B SYSTEM UPDATE

In practice, attackers will keep evolving their cheating strategies
to avoid detection. Therefore, EVILHUNTER must be able to update
periodically. In this section, we present a simplified update scheme,
which updates EVILHUNTER per week.

Methodology. In Stage 1, we periodically retrain the classifier
using an active learning approach [34, 35]. At the end of each week,
we collect the devices labeled by EVILHUNTER in the last week (7
days) and use them to retrain the classifier if the confidence of the
prediction is high, e.g., the predicted score is within [0,0.1] (for
benign devices) or [0.9, 1.0] (for fraudulent devices). Alternatively,
new datasets can be obtained using other means (e.g., from other
companies) to retrain the classifier. For the threshold parameters
used in Stages II and III, we keep these parameters as fixed values
for incoming new datasets until the result of offline cross-validation

0.94 1 ;
1.
qosz] AR A LA
g P
VAW
1} | 4
< 0.881
—e— w/o update —&— update at 14th day
0.861 update at 7th day =~ —%— update at 21st day
0 5 10 15 20 25 30
#day

Figure 17: Accuracy with and without updating.

[Total Log
3 Fraudulent Log

=
N U1 N O

Log Number (x 10°)

HHHDDDPHHHDHmmnﬁﬁmmDEW
5 10 15 20 25 30 35 40 45 50
App Rank

o

Figure 18: Log number distribution of the top 50 apps.

significantly drops. Once it happens, we search for the threshold
parameters as we did in Appendix A.

Evaluation. We use D3y to perform an evaluation of our weekly
updating scheme. We compare the accuracy with and without up-
dating in Fig. 17. The first model (M1, in blue) is trained with the
data of day 0. The second model (M2, in yellow) is an updated
version of M1, retrained using the labels of the first week at the
beginning of the second week (7th day). M2 is then tested on the
dataset since the 7th day. Similarly, the third model (M3, in green)
is trained with the dataset of the first two weeks, and tested using
the data of the last two weeks; the fourth model (M4, in red) is
trained with the data of the first three weeks and tested using the
last week’s data. The results suggest that our updating scheme can
indeed improve the accuracy.

C PROFILING TOP 50 APPS

To have a deeper insight into the ad fraud caused by invalid traffic
in 2018, we use the following method to build suitable versions of
EvILHUNTER in 2018 and profile top 50 apps.

Methodology.

Since fraudulent devices may exhibit different features in differ-
ent years, we can not directly apply the trained model in 2020 to
predict the old devices in 2018. Thus we retrieve the device IDs of
the labeled devices in 2020 from the full bid logs of 2018. As a result,
we found a total of 3,840 fraudulent and 5,070 benign devices in 2018.

5 10 15 20 25 30 35 40 45 50
APP Rank

Figure 19: The distribution of fraudulent log ratios (FLR)
and fraudulent device ratios (FDR) of the top 50 apps.

Then we use these devices as the training dataset and then train
the device classifier. The classifier achieves 80.7% accuracy, 78.5%
precision, and 86.1% recall in the 2018 dataset. To study the top
apps sending the largest number of ad bid requests, we use 300,000
random sampled Android devices in the 2018 dataset, predict them
with EVILHUNTER, and extract the bundle IDs contained in their
logs. We then calculate the number of logs for each app, as well as
the number of fraudulent logs, i.e., logs generated by fraudulent
devices. We define the following metrics (Eqns. 4-6), including a
fraudulent device ratio (FDR), a fraudulent log ratio (FLR, identical

to a previous invalid traffic ratio), and an app fraudulent degree
(AFD) to represent the fraud degree for each app.

Fraudulent devices of app i
FDR; =

Total devices of app i

FLR; = # Fraudulent logs of aPp i’ 5)
Total logs of app i

low, FLR; € [0,0.33),
medium, FLR; € [0.33,0.66), (6)
high, FLR; € [0.66,1].

AFD;

The results of the top 50 apps, with respect to log numbers, and
detailed statistics of the top 5 apps are shown in Fig. 18 and Table 7,
respectively. From Fig. 18 and Table 7, we can see that the top apps
generated 4,974,027 ad bid requests, and 1,925,669 requests were
invalid; the top 5 apps all together generated more than 200,000
requests. We further studied FLR and FDR, as shown in Fig. 19. We
can see that 14 out of the top 50 apps exhibited high FLR (>50%),
wherein 6 apps had an FDR higher than 30%. This indicates that
a relatively small number of fraudulent devices generate a larger
number of ad requests.

Table 7: Statistics of the top 50 apps sending most ad bid requests in the 2018 sampled dataset (300,000 devices). FLR is the fraud-
ulent log ratio (invalid traffic ratio); FDR is the fraudulent device ratio; AFD is the app fraud degree (defined in Appendix C).
The results are derived from EVILHUNTER. The daily loss is the estimation based on the average eCPM value ($2). # 19, # 22,
and # 48 are i0OS apps with unknown numbers of downloads. # 49 is unavailable in any market.

Rank App Bundle ID Version # Downloads Latest Update # Logs FLR # Devices FDR Available AFD Daily Loss
1 com ¢ 6.03.5 5B 2020/07/31 1,102,014 42.72% 17,455 7.44% Yes Medium $303,461
2 comxy e 5.55.2 2B 2020/07/31 411,661 2.13% 7,929 0.88% Yes Low $5,645
3 comjj e 5.3.3 528 M 2019/10/23 372,631 70.51% 785 22.55% Yes High $169,360
4 com, g s 423 760 M 2020/07/11 303,726 55.13% 3,776 20.68% Yes High $107,920
5 com.co IR 5.1.2 211 M 2019/08/09 209,332 87.11% 613 43.39% Yes High $117,528
6 com. o IR 6.6.0 674 M 2020/07/12 204,402 33.93% 1,122 7.22% Yes Medium $44,698
7 comji* 2.8.26 3B 2020/07/29 166,085 16.75% 6,816 9.26% Yes Low $17,929
8 coman* I 12.7.10 12B 2020/08/07 150,159 18.12% 768 3.26% Yes Low $17,534
9 net.mo* 2.6.2 69 M 2020/05/15 133,471 51.25% 50 14.00% No Medium $44,088
10 com.gh** e 2.4.602 534 M 2020/07/31 132,317 44.26% 797 6.02% Yes Medium $37,742
11 com.qi™T 2.6.2 104 M 2020/07/27 115,721 30.84% 2,500 4.64% Yes Low $23,000
12 com, QU I 2.0.3 32M 2013/08/16 88,555 45.38% 30 20.00% No Medium $25,904
13 (96 4 1o il 2.0.2 397 M 2019/12/27 86,111 33.00% 1,094 10.05% Yes Low $18,318
14 do*rrn e 7.53 367 M 2020/02/13 77,829 6.55% 756 1.19% Yes Low $3,287
15 com.wa***** 3.5.7 14 M 2019/06/04 72,880 0.00% 43 0.00% No Low $0
16 com.ca™* 3.1.2 262 M 2020/07/20 72,562 14.56% 1,751 7.08% Yes Low $6,810
17 com.ma* 2.4.76 737 M 2020/07/30 71,844 37.42% 777 14.93% Yes Medium $17,326
18 comLty T 5.2.3 43 M 2020/05/09 70,479 30.38% 322 12.73% Yes Low $13,799
19 com.mo**FFHHIERE 1.1 - 2020/06/24 70,073 93.74% 68 76.47% No High $42,339
20 compe™ I e 33.1 3B 2020/07/29 66,937 0.05% 5,417 0.02% Yes Low $19
21 com.zx I 2.4.1 1M 2017/09/12 61,161 74.25% 171 25.73% No High $29,270
22 com.ne™* I 33.1 - 2020/07/22 55,420 77.70% 1,637 69.40% Yes High $27,756
23 com.gh e e 8.6.4 7B 2020/07/31 50,700 7.38% 8,776 4.49% Yes Low $2,411
24 com.le*** 2.4.6 1B 2020/07/23 50,392 2.66% 3,291 1.37% Yes Low $862
25 com.yd " 1.0 1K 2018/01/23 46,092 0.71% 4,906 1.04% No Low $212
26 com e 1.1.1 1K 2019/07/26 45,040 47.12% 19 31.58% No Medium $13,678
27 com Jy e 1.1.8 36 M 2019/12/11 42,581 20.07% 90 12.22% Yes Low $5,507
28 flrmes 1.0 10K 2017/03/29 40,328 29.72% 955 11.10% No Low $7,725
29 com.wi* I 3.6.2 1M 2016/01/26 39,662 39.07% 133 11.28% No Medium $9,987
30 com.du I 3.6.5 1B 2020/08/04 39,005 0.16% 1,234 0.57% Yes Low $39
31 com.gh** e 2.14 3M 2019/06/15 38,694 77.24% 88 27.27% No High $19,263
32 com.zx " 3.7.702 63 M 2020/05/07 34975 61.28% 236 12.71% Yes Medium $13,815
33 com, du*EH e 2.75 20 M 2017/06/28 33,671 42.04% 2,599 7.58% No Medium $9,124
34 com fo™ ¥ R 5.0.5 17M 2019/09/17 29,673 42.72% 46 13.04% Yes Medium $8,169
35 com.hu******* 7.0.21 203 M 2020/07/25 28,223 35.41% 544 10.48% Yes Medium $6,442
36 com g™ eaaaaanees 11,19 1K 2018/01/19 27,328 50.60% 3,463 24.86% No Medium $8,912
37 compa” e e 3.9.11 4K 2018/01/03 27,201 50.27% 3,480 24.77% No Medium $8,813
38 com bl H 2.3.6 109 M 2020/08/03 26,869 0.06% 293 0.34% Yes Low $9
39 com.ba™ > 8.2.0 1B 2020/08/03 26,689 1.43% 1,513 1.12% Yes Low $245
40 com.po I 0.9 668 K 2018/11/10 26,004 41.60% 83 13.25% No Medium $6,972
41 com g™ e 7.13.0 - 2020/07/27 24,767 75.36% 1,399 54.11% Yes High $12,030
42 com.ca** I 3.0.1 52 2017/11/24 24,274 100.00% 2 100.00% No High $15,645
43 com Jg* e e 2.0.0 7™M 2019/09/20 24,117 4.96% 720 3.61% Yes Low $771
44 com b e 352 206 M 2020/06/12 24,108 1.87% 317 1.89% Yes Low $290
45 com.In****** 1.0 1K 2018/01/12 23,915 0.84% 5,360 1.19% No Low $128
46 com.c]rI 5.1.2 2M 2019/09/23 21,411 2.61% 703 2.42% No Low $359
47 com o™ 1.0.0 1M 2019/03/11 21,363 23.40% 3,430 6.68% No Low $3,222
48 com.ru®* 7.1.3 180 M 2020/08/06 21,148 35.17% 629 10.97% Yes Medium $4,794
49 com iR - - - 20,599 55.76% 41 21.95% - Medium $7,403
50 com.apn** e 1.0.0 sM 2018/03/27 19,828 4.71% 773 3.49% No Low $602

	Abstract
	1 Introduction
	2 Background
	3 Datasets
	3.1 The Format of Ad Bid Logs
	3.2 Overview of Datasets

	4 Measuring Fraudulent Devices
	5 EvilHunter
	5.1 Stage 1: Classification
	5.2 Stage 2: Top-App Based Clustering
	5.3 Stage 3: Aggregation
	5.4 Implementation

	6 Evaluation
	6.1 Parameter Settings
	6.2 Evaluation Results

	7 Click Farm Investigation
	7.1 Cheating Strategy 1: Using IP Proxies
	7.2 Cheating Strategy 2: Rotating IPs and Forging Device IDs
	7.3 Cheating Strategy 3: Forging User Agents
	7.4 Cheating Strategy 4: Rotating Apps

	8 Real-world Deployment
	8.1 System Optimization
	8.2 Result Validation

	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A Sensitivity of Parameters
	B System Update
	C Profiling Top 50 Apps

