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Abstract—Along with the popularity of mobile social networks (MSNs) is the increasing danger of privacy breaches due to user
location exposures. In this work, we take an initial step towards quantifying location privacy leakage from MSNs by matching the users’
shared locations with their real mobility traces. We conduct a three-week real-world experiment with 30 participants and discover that
both direct location sharing (e.g., Weibo or Renren) and indirect location sharing (e.g., Wechat or Skout) can reveal a small percentage
of users’ real points of interests (POIs). We further propose a novel attack to allow an external adversary to infer the demographics
(e.g., age, gender, education) after observing users’ exposed location profiles. We implement such an attack in a large real-world
dataset involving 22,843 mobile users. The experimental results show that the attacker can effectively predict demographic attributes
about users with some shared locations. To resist such attacks, we propose SmartMask, a context-based system-level privacy
protection solution, designed to automatically learn users’ privacy preferences under different contexts and provide a transparent
privacy control for MSN users. The effectiveness and efficiency of SmartMask have been well validated by extensive experiments.
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1 INTRODUCTION

M OBILE social networks (MSNs) are increasingly popular
for enabling users to continuously sense their locations

and social context via mobile social apps, and receive accurate
and high-quality location-based and personalized service. Popular
MSNs include Facebook, Weibo, Renren, Foursquare, Wechat,
Momo, and Skout, which have the registered accounts more than
half of the globe population. Among these MSNs, Facebook (1.3
billion monthly users), Twitter (900 million users), Weibo (500
million users), and Renren (214 million active users) [1], support
Direct Location Sharing, e.g., location check-in, geo-location tag,
and geo-location semantic comments, to disclose the exact loca-
tions of the mobile users to other users in the networks. Existing
research works show that the direct location sharing mechanisms
are effective for attracting attention, boosting self-presentation,
and promoting and sustaining social capital [2]. Recently, a new
class of location-sharing application, called location-based social
discovery, enables users in physical proximity to disclose their
relative distances to other users in physical proximity. We define
this kind of location sharing as Indirect Location Sharing. The
typical example is Wechat, one of the most popular MSNs in
China supporting location-based social discovery, has more than
600 million registered user accounts over 200 countries. Other
examples are, Momo with 100 million registered user accounts
and 40 million active users per month [3], and Skout, a very
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popular dating app in North America, with 1.5 million new users
a month [4].

Although the MSNs greatly benefit our social life by integrat-
ing the cyber space with the physical world, the MSNs increase
the danger of user privacy breaches due to the direct and indirect
location sharing. There are quite a few studies addressing location
privacy issues in MSNs [5], [6], [7], [8], [9]. However, little
attention has been paid to quantifying private information leaking
issues arising from location sharing in MSN. In this paper, we
will study the private information leaking in MSNs from three
perspectives. i) We aim to understand how accurate the location
information disclosed by the current location sharing mechanisms
can reflect the users’ real location patterns in terms of coverage
and distribution. ii) Based on the shared locations [10], [11], is it
possible for the attacker to dig out more sensitive information such
as the demographic information (e.g., the ages, genders)? iii) Last
but not least, though it is well known that privacy enhancement
cannot come for free, how to achieve the trade-off between the
privacy control and loss of the utility represents a great chal-
lenge. The challenge is that the concept of privacy may change
significantly due to the contexts and locations, user’s behavior,
and many other factors [14], while the users may fail to change
their privacy settings accordingly in the existing solutions [12],
[13], [14]. Our motivation is to provide the users with a fine-
grained and user-transparent privacy control mechanism, which is
expected to provide different privacy controls for different contexts
in a user friendly way. For example, the most visiting locations
are most closely related to the user’s Top Locations (e.g., home or
work place) [7], thus deserve a higher privacy protection level. On
the other hand, the public regions can be assigned with a lower
privacy level to guarantee the MSN’s service quality. What is
the most important, the proposed framework should automatically
sense the contexts and translate them into corresponding privacy
levels, which does not require the excessive involvement of human
operations.
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In this work, we first take an empirical study on measurement
of the location privacy leaking in MSNs, before we propose an
effective privacy control approach. We focus on two real-world
location datasets. The first dataset is a three-week experiment
involving 30 volunteers. We collect GPS coordinates as the ground
truth trajectories of volunteers with our customized sensing apps.
We also obtain the disclosed location information from their
MSN applications. The second dataset contains 5 months’ location
trajectories of 22,843 users, which are collected from a campus
Wi-Fi network. We analyze the first dataset to understand how
accurate the disclosed locations by the current location sharing
mechanism can reflect the users’ real location patterns in terms
of coverage and distribution. We analyze both datasets to launch
and propose two algorithms to simulate the demographic inference
attack. The contributions of our work are summarized as follow:

• We measure the similarity between the disclosed locations
in the MSN applications and the real mobility pattern, in
terms of two novel defined metrics including coverage rate
and the relative entropy. In particular, it is found that the
direct location sharing and the indirect location sharing
only reveal 16% and 33% of POIs and the relative entropy
1.68 and 0.92, respectively. The empirical study shows
that there is a big gap between the shared location profile
and the user’s real mobility pattern.

• Though the shared locations only reveal a small portion of
the real mobility patterns of human beings, we present a
new attack, which is expected to infer users’ demographics
from the disclosed locations by checking their similar
POIs. To infer a specific attribute of a user, we identify
a group of users with similar location traces, and check
the attribute of another user in the same group who
publicly reveals her attributes. Our experiments, based on
two datasets, show that our inference technique efficiently
predicts demographic attributes (age, gender, occupation,
education level and living place) that are very often hidden
by users even with incomplete shared locations.

• We propose SmartMask, a system-level privacy control
approach to provide a transparent privacy control for the
users. SmartMask simply defines the privacy requirements
based on location contexts, such as location, frequency
of visits, and duration of visits. Users input some initial
settings by a user-specified interface, and SmartMask auto-
matically learns users’ privacy preferences under different
contexts by the Decision Tree model. The automatic priva-
cy level configuration and fine-grained obfuscation module
are achieved based on automatic location profile manage-
ment, location context classification and user preference
learning. SmartMask is also designed to be compatible
with the existing obfuscation techniques [29].

The remainder of this paper is organized as follows. In Section
2, the background, attacker model and the datasets are introduced.
In Section 3, we present two metrics to quantify the difference
between the disclosed locations and the real trace. In Section
4, we propose novel inference techniques that can reveal the
users’ demographics from their shared locations. In Section 5,
a system level privacy protection approach, named SmartMask, is
presented. In Section 7, related works are introduced. In Section
8, we conclude this paper.

(a) Direct location sharing on
Weibo

(b) Indirect location sharing on
Wechat

Fig. 1: Location Sharing on Mobile Social Networks

2 LOCATION SHARING IN MSNS

Current behavior disclosure on social network sites like Facebook
reveals that users are generous to share their information [2]. In
this work, we consider two kinds of location sharing in MSNs as
is shown in Fig 1.

2.1 Direct Location Sharing in MSNs
Most of the popular social networks such as Facebook, Twitter,
Foursquare, Weibo, and Renren provide the following location
based sharing functionalities:

• Geolocation Tags: Mobile social networks (e.g., Facebook,
Weibo, Renren) provide users with the option to reveal
(or redact) location data on posts. A typical approach
for implementing Geolocation tags is to add geographic
information to an object, such as a photograph.

• Check-in Services: Check-in on mobile social networks
(MSNs) like Facebook, Weibo, and Foursquare is another
popular kind of location based service (LBS). It reveals
users’ mobility traces and can be potentially exploited by
the adversary.

• Location-dependent Comments: Users’ comments in M-
SNs might also involve their location information. A
good example for location-dependent comments is Yelp
or Dianping. These platforms provide online reviews for
local services (e.g., a restaurant or shop). An online
review about the services of this restaurant/shop normally
indicates the visiting of this restaurant/shop, which allows
the attacker to correlate mobility traces with the physical
location of this restaurant.

Based on Geolocation Tags and Check-in services, the attacker
can easily obtain the location information shared by the mobile
users by crawling down the interested information from web
pages, extracting POIs from collected data, or even automatically
transforming the name of this location to a GPS coordinate or vice
versa. We denote such a kind of location sharing as direct location
sharing.

2.2 Indirect Location Sharing in MSNs
It is also witnessed that the location-based social discovery net-
works (e.g, Wechat, Momo and Skout), are quickly gaining popu-
larity. These new MSNs explicitly enable on-the-spot connection
establishments among users based on physical proximity. Instead
of pinning users’ exact locations on a map, it provides an implicit
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way for location sharing: it only displays coarse-grained proximity
information, such as “Jack is within 3 miles”. The latest works
point out that, by only exploiting the public available information,
the attacker can collect the users’ almost exact locations, reveal
their mobility traces as long as they are using the corresponding
proximity-based social discovery functionality [5], [6], [7], [8]. We
denote it as indirect location sharing as, in location-based social
discovery networks, the users’ locations can be obtained by the
outside observers if the following two conditions are satisfied:

• Locations are shared by the users: The user’s action of
performing a proximity-based social discovery actually
grants the permission of sharing his locations with others.

• Users’ location sharing activities are observed by out-
siders: Proximity-based social discovery apps only display
the latest location of a specific user. The user’s location in
a specific time slot can be obtained by the outsider if and
only if his sharing location activity is observed; otherwise
his historical traces will be covered by the subsequent
location sharing.

Different from the direct location sharing in which the users’
historic traces can always be accessed by the outsider, the indirect
location sharing requires the outsider to actively track the target to
build the target’s trace. For more details about the attacks towards
Wechat, Momo, Skout or even facebook, please refer to [5], [6],
[7].

2.3 Attacker Models

The goal of the adversary is to build the location profile of the
target victim and infer the sensitive data or demographics of
the target. In particular, we consider two kinds of adversaries
corresponding to two location sharing approaches:

• Casual Tracking Attacker: For the direct location sharing,
the attacker can always access the target’s location history
and build his location profile if the users’ information is
public [2], [15]. Therefore, the attacker can launch the
attack anytime and this attack can be casual and last for a
random duration. The typical examples of casual tracking
attacker model include Facebook, Foursquare, Weibo and
Renren.

• Continuous Tracking Attacker: For the indirect location
sharing, the attacker should perform a long term tracking
towards the victim [5], [6], [7]. The attacker can collect
the users’ almost exact locations, reveal their mobility
traces without physical contact, as long as they are using
the corresponding proximity-based social discovery func-
tionality. The considered typical examples of this attack
model include Wechat, Momo and Skout. According to
our previous study [7], more than 80% of tracking results
on Momo can geolocate the victims in 40m, more than
90% of tracking results on Skout geo-locate the victims
to 0-20m and 80-100m, and over half of the tracking on
Wechat users can be located to the accuracy of less than
60m.

In both cases, the capability of the attacker is limited to exploiting
the public available information on the Internet without hacking
the system of the service provider. However, as discussion above,
the attackers can still infer the users’ locations accurately (so we
use the term “shared locations” and “inferred locations” equally

under the attacker model in this paper). The attacker aims to obtain
the location information of the target, build his location profile,
and infer the demographics. The following part of this paper will
investigate these problems based on the practical attack model.

2.4 Datasets

2.4.1 Dataset I: A Real-world MSN Dataset

The first dataset is a real-world MSN dataset, which is denoted as
Dataset I. We recruited 30 volunteers from different departments
and different grades on campus to collect their directly shared
locations from Weibo and Renren (Direct Sharing Trace), indi-
rectly shared locations from Wechat, Momo and Skout (Indirect
Sharing Trace), and mobility traces at fixed interval (Ground Truth
Trace). For Direct Sharing Trace, we crawled down the users’
personal information, such as age, gender, interests, hometown,
and user ID from MSN webpage. Note that, some of these profiles
are normally kept private by the users such as age, occupation
and living place. We discuss how to infer the demographics in
Section 4. Then, with the user ID, we collected traces of the
users’ check-ins and location-tags using open API. For Indirect
Sharing Trace, we collected traces when the volunteers use the
geosocial functionalities such as look around and shake hands by
the approaches presented in [5], [6], [7]. The detailed information
of the traces is listed as follows:

• Direct Sharing Trace contains 252 Weibo and Renren
Check-ins and location tags. Each check-in or location tag
includes a timestamp, the name of a POI, and the location
coordinate.

• Indirect Sharing Trace contains 2,404 coordinate records
collected from volunteers using Wechat, Skout and Momo.
It captures volunteers’ inferred location when they use
location based service. Each coordinate record includes a
timestamp, a GPS coordinate, the app name, and the user’s
nickname.

• Ground Truth Trace contains totally 886,737 GPS coor-
dinate records collected by the sensing apps developed
by us. It captures each volunteer’s GPS location every 30
minutes. Each coordinate record includes a timestamp, a
GPS coordinate, and the user’s nickname.

2.4.2 Dataset II: A Large Scale Real-world Dataset from
Wi-Fi Traffic

In addition to the small scale real-world experiments above, we
obtained the second dataset. Dataset II is a set of large scale real-
world Wi-Fi traffic records which involve data of 22,843 users
within 5 months. This dataset has MSNs traffic logs from 98 Wi-
Fi hotspots deployed on the campus and the MSNs traffic logs
record location trajectories. Each log contains anonymized user id,
MSN name, location, and access time. Meanwhile, the dataset also
provides anonymized user attributes such as gender and education
level, which provides the ground truth to evaluate the performance
of the proposed inference results. Table 1 shows the distribution
of the users’ demographic attributes.

TABLE 1: User demographic attributes distribution
Gender

Male Female
11509 11334
50.4% 49.6%

Education
Bachelor Master Doctor

11509 7896 3438
50.4% 34.6% 15.0%
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Justification of Utilizing Dataset II to Simulate The Data Shar-
ing: To avoid the dataset bias of Dataset I, we introduce Dataset
II to implement the inference attack as well as countermeasure
evaluation. Note that, location sharing in MSNs reveals a part of
real POIs of users. Exposed locations from Wi-Fi access history in
Dataset II also gave a partial review of users’ real POIs. Therefore,
it is reasonable to simulate location sharing in MSNs by exploiting
Dataset II with different location sharing probabilities. In order to
further justify the utilizing of Dataset II, we define a metric “data
sharing rate” that defines the possibility that a user shares his
location in MSNs. The results of demographic inference (which
will be discussed in Section 4) under different data sharing rates
are shown in Appendix.

In Section 3, we use Dataset I to quantify similarity between
shared locations and ground truth mobility traces. In Section 4, we
use both datasets to infer demographics with different methods.

3 QUANTIFYING LEAKAGE OF SHARED LOCA-
TIONS

The first problem in this work is how well the shared location
data correspond to each user’s physical mobility patterns. In this
section, we explore this problem by first giving a formal definition
of location profile, and then proposing two metrics to measure the
distance between shared location profiles and the users’ physical
location profiles.

3.1 The Location Profile of MSNs

Different from previous research works which build location
profile based on phone call log and GPS [16], [17], [18], lo-
cation profile from MSNs has special properties. On one hand,
granularity of locations varies from place to place, because real
locations will be clustered as POIs. On the other hand, the exact
information in temporal, such as exact entering time and exiting
time of a POI, is difficult to be obtained in MSNs. So an adversary
cannot perform real time tracking via MSNs.

Consider a set of users U = {u1, . . . , un} who enjoy a
wide range of location based services provided by various MSNs.
The considered area is partitioned into a finite set of POIs
which represent the locations within minimum granularity, i.e.,
R = {r1, . . . , rN}. The user’s trajectory refers to his movements
along the spatial and temporal domain. We model the trajectory
of a specific user u as a function mapping a time point in T
to the user’s location in R at that time, i.e., αu : T → R.
Thus, if the user traverses k POIs for k different time slots,
the ground truth mobility traces of the user u can be denoted as
M =<< u, t1, αu(t1) >, . . . , < u, tk, αu(tk) >>. In mobile
social networks, the attackers can exploit various opportunities to
collect the snapshots of mobility traces of mobile users. The mo-
bility traces collected by the attacker can be denoted as M̃ ⊆M.

From the trajectory M, we can obtain an aggregate view on
a user’s mobility pattern by building his location profile, which
includes the user’s visited location set L = {l1, . . . , ln} and its
discrete probability distribution as θi = P (li). Here P (li) denotes
percentage of visits of li. Similarly, from the shared trajectory
collected by the attackers M̃, the attacker can also obtain the
inferred location profile, including the inferred location set L′ =
{l′1, . . . , l′n} and its discrete probability distribution θ′, using the
methods mentioned in Section 2.3.

To capture the degree of predictability of the mobile user’s
mobility, we consider an entropy-based definition to model the
users’ mobility pattern [21], which is defined as follows

Entropy of Mobility Patterns Let L be the user u’s physical
location profile, we define the uncertainty and thus the entropy of
this user mobility pattern as

E(L) = −
∑
l∈L

θ(l) log2θ(l) (1)

Similarly, from the inferred location profile L′, we can obtain
the entropy of the inferred user mobility pattern as

E(L′) = −
∑
l∈L′

θ′(l) log2θ
′(l) (2)

The entropy of user’s mobility pattern is determined not only
by number of POIs that he visited but also by the frequency of the
visitation. Therefore, the entropy E(L) has the maximum value
when the probability of visiting each location follows a uniform
probability. On the other hand, E(L) has the minimum value when
the probability of staying at one location is dominant (e.g., pi =
1).

Whereas, the properties of location profile in MSNs, as dis-
cussed above, make it difficult to reveal user’s real location profile.
To well quantify leakage of shared locations, we propose two
novel metrics to quantify the similarity between shared locations
and real mobility patterns, which indicate how much privacy leaks
out from the location sharing and are introduced in details in the
following section.

3.2 The Comparison of Real and Inferred Location Pro-
files
The shared locations are only a partial view of a user’s real
mobility traces, which means that L ⊂ L′ or θ ⊂ θ′. To measure
how much L can match L′, we introduce the first metric:

Metric I: N-Location Coverage Rate Given L as the ground
truth location set, L′ as the inferred location set, we define Sel()
as the function that returns all of POIs of a specific location set
and define SelN (L) as the function that returns N POIs from L
by following a certain rule. We define N Location Coverage Rate
as

TNR =
|SelN (L) ∩ Sel(L′)|

N
(3)

which refers to the percentage of locations that belong to both of
selected N locations in both the real location set and the inferred
one.

N-Coverage Rate can be used to evaluate how many POIs
are exposed from shared locations in MSNs. For example, the
existing research works point out that “Top N” locations refer to
the locations that are most correlated to users’ identities (e.g.,“top
2” locations correspond to home and work locations) [19]. Thus,
in the context of top N location discovery, N-Coverage Rate can
be re-defined to Top N Location Coverage Rate. In other cases,
if the attackers care more about the most semantic sensitive POIs
(e.g, hospitals, clubs and etc), N-Coverage Rate can be defined as
N Sensitive Location Coverage Rate.

N-Coverage Rate alone cannot well describe how much lo-
cation privacy is leaked from location sharing in MSNs. This is
because, according to the entropy definition of users’ mobility
pattern, a user’s mobility pattern should be based on not only
how many POIs he visits but also its probability distribution. To
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Fig. 2: Comparison of shared mobility and ground truth traces

measure the distance between the ground truth location profile
and the inferred location profile from probability distribution point
of view, we give the following relative-entropy based definition,
which is regarded as a good measure of the distance between two
distributions in Information Theory [20].

Metric II: Relative Entropy of The Real and Inferred
Location Profile Let the location set S = L ∩ L′ refer to the set
of the locations that belong to a user’s real location profile and
inferred location. Let θ and θ′ be discrete probability distribution
on location set S for real location profile and inferred location
profile, respectively. Then, we can define the relative entropy of
these two distributions and thus the confidence on the inferred
location profile as

Dkl(θ, θ
′) =

∑
s∈S

θ′(s) · log θ
′(s)

θ(s)
(4)

It is obvious that this metric is always non-negative and is zero
if and only if θ = θ′. In the next subsection, we will show the
matching results from the real-world experiments.

3.3 Quantifying Location Profile Similarity
We evaluate the location profile similarity using Dataset I de-
scribed in Section 2.4 and compare the two metrics with the
ground truth.

3.3.1 N-Location Coverage Rate
N-Location Coverage Rate represents how many POIs are exposed
from the locations shared by users in MSNs. Firstly, we investigate
an extreme case that sets N = |L|, which measures the percentage
of the real users’ mobility traces that are included in the shared
locations. From Fig 2(a), it is shown that, Direct Sharing Trace
and Indirect Sharing Trace can achieve 16% and 33% coverage
rate. We further investigate coverage rate of users’ most sensitive
locations by setting N = 3, 5, 8, 10. The Top N coverage rate
of Direct and Indirect Sharing Trace are 38.1%, 34.3%, 26.8%,
25.7% and 65.1%, 56.2%, 45.2%, 39.5%, respectively. We are
also interested in which locations users are not checking in at. The
intuition here is, due to the existence of usage pattern, the users
may not share their locations at specific locations. To validate it,
we identify the top-N most visited POIs of each user, and examine
the portion of their missing check-ins. The missing check-in radio
for top N locations means the percentage of users who have
missing check-ins in their top N location. Fig 2(b) plots the CDF
of the missing check-in radio for all of the users for their top 3,
top 5, top 8 and top 10 locations. The results show that some
locations account for a large portion of missing check-ins, which

demonstrates the users do not share their most sensitive locations
in many cases.

3.3.2 Relative Entropy

Relative entropy represents the difference between the location
distribution of the users’ shared location and their physical vis-
iting. We firstly look into the entropy of users’ shared locations
from Direct Sharing Trace and Indirect Sharing Trace of real-
world experiment, which is shown in Fig 2(a). For Direct Sharing
Trace, which mainly includes the shared data from Weibo and
Renren, it is observed that its average entropy is 1.18 while the
average entropy of Indirect Sharing Trace is 1.73. The former is
lower because the users may choose not to share locations at some
places directly (such as private locations or Top 2 locations) while
these locations can be exposed to the attackers indirectly [7]. The
latter is more consistent with the existing research [21], which
points out that the human’s mobility is highly predictable and that
the real uncertainty in a typical user’s whereabouts is about 1.74,
fewer than two locations [21]. As is shown in Fig 2(c), this is also
demonstrated by evaluating their corresponding relative entropy,
in which Direct Sharing Trace has a much higher relative entropy
value. This shows that Indirect Sharing Trace (or the shared data
from Wechat, Momo or Skout) is closer to the users’ real mobility
pattern, and can be used to learn more information about the
victim, compared with the Direct Sharing Trace.

3.3.3 Discussion

There is a diversified range of factors which contribute to the
difference between the real and inferred location profiles, includ-
ing: users’ usage pattern, wireless access, as well as the different
social network platforms. Among the potential factors, users’
usage patterns significantly affect the inferred location profiles.
The existing research works show that users typically do not check
in at places which they think are “boring” or “private”, which
leads to a generally low Top 5 location coverage rate [15]. In our
experiments, an interesting observation is that the most sensitive
locations (Top 2 location) of the users’ real traces may not rank
the highest in the inferred trace, which leads to the inference of
users’ attributes (especially the demographic attributes) from their
traces not so straightforward. In the next section, we will introduce
a novel inference technique based on similar-trace user selection.

It is also noted that there exists a clear difference between
public accessible social networks (e.g., Weibo and Renren), which
are mainly represented by Direct Sharing Trace, and location
based social discovery networks (e.g, Wechat, Momo and Skout),
which are mainly represented by Indirect Sharing Trace. The
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former shows a much lower coverage rate, which is consistent with
the research on Foursquare check-in dataset [15]. This is because
the shared locations in Weibo and Renren are permanently saved in
the networks and will be accessible for everyone, which make the
users hesitate to share their sensitive locations. Instead, Wechat,
Momo and Skout are geo-social applications and sharing location
is their major feature, which makes the users easier to share their
locations.

From the above discussion, it can be concluded that the
inferred location profiles only reveal a small percentage of the real
location profiles of the users. In the next section, we will study if
an adversary can exploit this incomplete information to infer the
user’s demographics.

4 FROM MOBILITY TRACES TO DEMOGRAPHICS

4.1 Overview
Existing research works demonstrate approaches to making auto-
matic semantic annotations of places [22], [23] that can be used
to infer users’ activities and public attributes. However, in the
previous section, we have shown that the locations shared in MSNs
are only a partial view of the users’ mobility traces. For example,
the users may choose not to check in at their private places (such as
Top 2 locations). Further, some demographics such as genders and
ages are not highly relevant to the users’ mobility patterns. Hence,
inferring hidden or private profile/attributes is a non-trivial task. In
this section, we present different approaches to infer demographic
attributes according to the different scale of datasets.

We start from a novel common-trace based approach to infer
demographics of a target user in a small scale. Our observation is
that users with similar traces have similar personal profiles, thus
our algorithm is based on the famous algorithm Longest Common
String [24]. Hence, to infer a specific user’s demographics in his
profile, we can identify a group of users who share similar traces
and reveal their personal profiles publicly. Then, we can infer the
hidden values from the similar-trace users’ public attribute values.
Previous works predicted the user’s movement among locations
and recognized individual activities on each location based on
location similarity [25]. Different from previous works, our work
uses location similarity to infer user demographic attributes.

Further, we propose a more scalable machine learning ap-
proach and apply it to Dataset II for demographic inference in
a large scale data set. And finally, we compare merits of these two
approaches and discuss their applications.

4.2 A Maximum Common Trace based Demographic
Inference Algorithm
4.2.1 Work Flow
As illustrated by Fig 3, the proposed inference algorithm consists
of the following steps:

• Collecting Users’ Mobility Traces: The attackers collect
the mobility traces from the different users of a specific
region.

• Finding out the Maximal Common Trace between The
Target and Other Users: By setting a target, the attacker
finds out the maximal common trace between this specific
target and the other users.

• Calculating the Similarity Score: According to location
semantics contained in each maximal common trace, the
attacker can calculate a similarity score between the target

Fig. 3: The architecture of common-trace based inference ap-
proach

and other users, and then rank these users in terms of their
similarity score.

• Inferring Demographics: The attacker can infer the target’s
demographic attributes from top k users and do majority
voting for the Demographics.

4.2.2 Finding the Maximal Common Trace
We propose a Maximal Common Trace (MCT) matching algorith-
m to find the maximal common trace of two traces. Given two
location traces A and B, we define the Maximal Common Trace
as a subsequence containing the maximum length of common
locations sequence without changing the original time order in
both A and B. The basic idea of MCT is to use a table L[i, j] to
record the length of maximal common trace between the sub-trace
before the ith location of trace A and the sub-trace before jth
location of trace B. Once we acquire the table of L[i, j], it will be
easy to output the trace by backtracking the table. The algorithm
is summarized in Algorithm 1. The proposed algorithm needs a
two dimensional array with the size of m × n to store the length
of common subsequence and thus its complexity is O(m × n).
This complexity can be further reduced to O(m+n) if the users’
traces are maintained as the suffice tree [24].

Algorithm 1 Maximal Common Trace MCT(M1,M2)

1: Input: Two attack semantic tracesM1 andM2, where p =
|M1| and q = |M2|.

2: Output: C: maximal common location trace ofM1 andM2.
3:
4: Construct a two dimensional array L[p, q].
5: Record the length of maximal common location:
6: ifM1[i] =M2[j] then L[i, j]← L[i− 1, j − 1] + 1
7: else
8: L[i, j]← max|L[i, j − 1], L[i− 1, j]|
9: end if

10: Backtracking L[p, q] to construct C
11: Output C

4.2.3 Calculating the Similarity Score
The calculation of trace similarity is based not only on the
sensitiveness of different POIs but also on the localization pre-
cision of the shared locations. For the former, the sensitiveness of
different POIs are not uniform. The POIs which are more related
to the users’ identities or demographics, such as Top Locations
(e.g., home or work place) [7], are automatically assigned with
a higher weight according to the visiting frequency and the
location semantics while the public regions (e.g., public square
or cafe) can be assigned with a lower weight. For the latter,
a higher localization precision or a lower coverage of shared
location provides more information to the attacker. Therefore,
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we assign different levels of sensitiveness to different POIs and
different granularity to different collected shared locations. Both
sensitiveness and granularity will be represented by the metric
weight, assigned by the function rw. Then, the score of similarity
between two users’ traceM1 andM2 are calculated by Equation
5 and 6:

C = MCT(M1,M2) (5)

Score(M1,M2, C) =
∑|C|×|C|

i=1 rw(C[i])
|M1| × |M2|

(6)

where C[i] represents the ith location of common trace C, and
|M1|, |M2| and |C| represent the length of M1,M2 and C
respectively.

Algorithm 2 Inference of a certain demographic (M,N )
1: Input: The target’s traceM and trace dataset N
2: Output: The inferred attribute A
3: Users’ scores S = ∅
4: for Ni ∈ N do
5: C = MCT(M, Ni)
6: s = Score(M, Ni, C)
7: insert s into S
8: end for
9: S ′ = Sel(k,S)

10: A = MVoting(S ′)
11: output A

4.2.4 Inferring Demographics
We can infer a user’s demographic attributes from that of the k
most similar users, whose traces are the most similar to this user’s
trace. The detailed inference algorithm is presented as follows:
First, we select the k most similar users out of all whose attribute
is defined and public available. Then, based on the collected the
k most similar users as well as their public attributes, we infer
the target user’s demographic attributes by performing majority
voting. In other words, by selecting top k most similar users, the
attribute value shared by most of the users among these k users
is chosen. If there is more than one attributes having the maximal
number of votes, we will randomly pick one. The algorithm is
summarized in Algorithm 2. Here we can use the function Sel()
to represent the function of selecting the k most similar users
based on the similarity scores and the function MVoting() to
represent the function of making a majority voting for the value of
demographic attributes based on the k most similar users’ public
profiles.

The proposed inference algorithm is based on the observation
that people who share similar mobility patterns are likely to have
more common attributes than people who don’t. Therefore, it is
required that the inferred demographics should be closely related
to the users’ mobility patterns. However, its effectiveness may be
limited in the case that the demographics are not closely related
or even loosely related to the users’ mobility. In our experiments,
we will show the correlation between the selected demographics
(age, occupation, living place) and the users’ mobility.

4.2.5 Evaluation
In order to validate our common-trace based inference, we firstly
perform the experiments based on Dataset I. We select Occupa-
tion, Age, Living place from Dataset I as demographic attributes

TABLE 2: Inference Accuracy for Demographics
(a) Inference Accuracy of Dataset I

Demographic Baseline Random guess Inference
Occupation 54.2% 33.3% 69.2%

Age 42.7% 20% 53.8%
Living place 37.5% 20% 54.5%

(b) Inference Accuracy of Dataset II
Demographic Baseline Random guess Inference

Gender 50.3% 50% 73%
Education level 50.4% 33.3% 76%

in our experiments. We set top 5 users of similarity ranking for
majority voting and the baseline is set to the most likely value for
all users (i.e. the demographic attribute x belongs to most users).
We perform the inference towards the users by following the
previously described techniques and then compare the inference
results with ground truth data which are collected from a survey
of the experiment participants.

Table 2(a) shows that the demographics of Occupation, Age
and Living Place can be inferred at high accuracy rates, which are
much higher than the accuracy rate of baseline guesses and random
guesses. Taking the Occupation Inference as an example, our
algorithm performs 15% better than the baseline guess and about
35.8% better than the random guess. Compared with previous
work [26], our techniques also achieve a considerable successful
rate.

To further validate the proposed algorithm, we also evaluate
the degree of similarity between two trace similarity rankings and
the similarity ranking of the demographics in ground truth data by
using three kinds of correlation coefficient: Kendall correlation,
Pearson correlation and Spearman correlation. The results are
shown in Fig 4, which depicts the mean, maximum, minimum
and median of these correlation coefficients. The mean of three
kinds of correlation coefficients are around or above 0.5. It shows
that there is a strong correlation between trace similarity and the
attribute similarity which further demonstrates the motivation of
the proposed algorithm.

4.3 Exploiting Machine Learning for Demographic In-
ference in A Large Scale Data Set
The previously proposed common trace based inference algorithm
can achieve a higher accuracy at the cost of a higher complexity. In
this sub-section, we introduce a machine learning based inference
scheme which is suitable for the large dataset.

4.3.1 Problem Definition
As we have discussed above, mobile location profile L can be
collected by an attacker. Based on the collected location profiles
or mobility pattern, the goal of the attacker is to infer similar
demographics based on mining the mobility pattern from large
scale data. So it can be interpreted as a supervised classification
problem in machine learning:

Φ(Lu) = du (7)

where the input Lu is the location profile of a user u, and the
output du is the predicted demographic label of the user u. The
classification model Φ can be previously trained by a set of users
with demographic information and their location profiles. Once
the model has been trained, it can be used to infer other users’
demographic information, according to their location profiles.



8

Fig. 4: Correlation coefficients of trace similarity ranking and
demographics similarity ranking

4.3.2 Implementation
In practice, we implement a set of popular supervised classification
algorithms (K-Nearest Neighbors, SVM, Decision Tree, Random
Forest, AdaBoost, Logistic Regression, Naive Bayes) using scikit-
learn [27] to find the best classifier for predicting demographics.
We take all locations in our dataset as features in the learning
process. If a user shows up at a location, the value of this location
is set to 1, otherwise if a user never appears at a location, the
value of this location is set to 0 (we also take frequencies of
visiting locations as features, the result is similar). In this way, we
translate the location profile L into the feature vector F . In the
training phase, a set of feature sets and their corresponding users’
demographics are used to train the model Φ. In the predicting
phase, we can infer a user’s demographic information du based on
his/her feature vector Fu.

4.3.3 Evaluation
To validate this approach, we perform experiments on Dataset II
and try to infer the gender and education level within the 22,834
users. For each group of experiments, we randomly selected
50% of users’ data as training set and 50% as testing set. The
experiments are repeated for five times. We also take the most
likely value for all users (i.e. the demographic attribute belonging
to the most users) and the random guessing value as baseline
and reference. Table 2(b) shows that for gender inference and
education level inference, our algorithm outperforms the baseline
for 22.7% and 44.7%, and outperforms the random guess for
23.0% and 42.7%, respectively. Our machine learning based
approach shows that MSNs users’ demographics can be inferred
in a large scale.

4.4 Comparison of The Two Approaches

To further compare the Maximum Common Trace based inference
approach described in Section 4.2 and Machine Learning based
inference approach presented in Section 4.3, we randomly select
2000 users with equal number of males and females and 2000 user-
s with equal number of bachelors, masters and doctors. The rate of
successful inference of common-trace based approach is 78% for
education levels attribute and 73% for gender attribute, and the rate
of successful inference of machine learning approaches is 65% for
education level attribute and 62% gender attribute. It shows that
the first approach performs better than machine learning approach.
But the running time of common-trace based approach is almost
496 times longer than machine learning based approach under
same amount of data and same running environment. Thus we
propose different methodologies under different circumstances.

5 COUNTERMEASURE DESIGN AND IMPLEMENTA-
TION

In this section, we develop SmartMask, a novel privacy protec-
tion framework which aims to provide the fine-grained privacy
management for MSN users. The main idea of SmartMask is to
balance the tradeoff of privacy protection and utility by assigning
the privacy levels according to different locations and user pref-
erences. Our insight is that the mobile users tend to have more
social demands in the public places (e.g., pub or coffee shops)
while having a higher privacy-preserving need for Top 2 locations
(e.g., working place or home). Different from the previous works
which focus on how to obfuscate the data, SmartMask has the
following desirable properties:

• Context-driven Privacy Management: Privacy is context
dependent as is pointed out by [14]. Similarly, in MSNs,
users also have different privacy preferences in different
contexts. For examples, visiting a hospital is obviously
more sensitive than visiting a garden because the former
may raise the health concerns while the latter is positioned
as a social spot. Top locations (or most visiting places,
e.g., home or work place) are more closely related to users’
identities, thus much more sensitive. Visiting a bar or hotel
in the morning and in the evening may have different im-
plications. Therefore, locations, visiting frequency, staying
time are the factors of the contexts. SmartMask should take
them into consideration and support context based privacy
management.

• Fine-grained Location Privacy Control: SmartMask al-
lows a fine-grained privacy level assignment to meet the
diversified demand of the different users. For ease of
presentation, we consider a system with three privacy
levels, including high, medium and low. Under this privacy
setting, the most visiting locations are most closely related
to the user identity (Top Locations) and thus deserve
stronger obfuscation when they are shared in MSNs. So
the privacy level of Top Locations should be defined as
the high level. On the other hand, the public regions (e.g.,
scenery spot) can be assigned with the low privacy level,
which means less obfuscation, to guarantee its service
quality.

• Automatic Privacy Level Assignment: Fine-grained loca-
tion privacy control can be achieved only if the system
can automatically assign privacy levels based on different
contexts. The higher sensitive contexts lead to a higher
privacy protection level and a bigger obfuscation range. In
case that the automatic privacy level settings do not fully
match users’ preferences, SmartMask also allows the users
to set the privacy levels for specific locations or apps.

5.1 Framework Implementation

We design and implement SmartMask as a location-privacy pre-
serving module in Android system. Fig 6 illustrates the architec-
ture of SmartMask, which comprises of four components.

Contexts Generator: Collecting user’s location information
and storing user’s mobility history in the local database. We
implement a LocationProfile class in Android framework. This
class provides methods to execute clustering algorithm in the
mobility dataset, and then extract user’s location profile. Location
profile records user’s frequency, duration, time period of visiting
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Fig. 5: Context acquisition for privacy level

a location, which will be assigned a privacy preserving level
according to their sensitiveness.

Privacy-level Generator: Assigning the sensitive level for
each geographic position and LBS app based on different contexts.
There are three kinds of privacy level in SmartMask, low, medium
and high. To set the privacy levels automatically, a decision tree
model is introduced at server and assigns privacy levels based
on the contexts. Privacy level information is stored as XML file in
the SystemDir of Android file system or in secure cloud server and
will be used as obfuscation parameters in our obfuscating process.
We will discuss automatic privacy level assignment in Section 5.2.

User-specified Interface: Provides an interface for users to
specify their location sharing preferences. User-specified interface
was implemented as an system application in Android. This appli-
cation can report the LBS app by scanning the manifest file to find
ACCESS COARSE LOCATION or ACCESS FINE LOCATION
permission. The application can also show the geographic position
in a map. And then users can specify privacy preserving level for
LBS apps and geographic positions to meet their requirements.

Obfuscation Engine: This module is designed to implemen-
t obfuscation techniques and execute obfuscation process. We
introduce a function, ObfuscateLocation(), in LocationManager
class. ObfuscateLocation() provides the interface for different
obfuscation techniques. Parameters of this function are the original
location, the package name of query app, and the privacy pre-
serving level. We also modify Android location requesting APIs
so that whenever they are invoked by a querying app, they will
call obfuscateLocation() and return the obfuscated results to the
querying app.

5.2 Automatic Privacy Level Assignment based on
Contexts
5.2.1 Privacy Level
As we mentioned above, users have different privacy preferences
in different location contexts. So different privacy levels should be
assigned to different locations so that different privacy preserving
strategies can be applied. For example, the most visiting locations
are most closely related to the user’s identity (Top Locations) and
thus deserve stronger obfuscation when they are shared in MSNs.
So the privacy level of Top Locations should be defined as high
level. On the other hand, the public regions (e.g., scenery spot)
can be assigned with a lower privacy level, which means less
obfuscation, to guarantee its service quality.

Without loss of generality, we consider four kinds of features
in the context recognition, including Attributes of locations, which
divide the locations to different classes according to attributes of

Fig. 6: SmartMask architecture

location semantics, Frequency, Duration and Time period. Fig. 5
illustrates an example: three classes privacy levels are classified
according to the different features of location contexts. Whereas,
assigning privacy levels based on the features of contexts is non-
trivial because some of the features are dependent and non-linear.
To address this issue, we propose a decision tree based automatic
privacy level assignment approach. Decision tree models employ
human readable if-then-else statements which perfectly fit the
considered problem. And the cost of adopting decision tree is
logarithmic in terms of the number of training data.

5.2.2 Decision Tree Model

Our decision tree model takes a set of location features F as prior
knowledge. Then the model aims to predict privacy level of other
users’ visiting locations L. So it can be formulated as a classifier
Ψ which predicts privacy level j ∈ J = {1, ..., J} at the input L
over independent replicates of the learning setF , which is denoted
as:

Ψ(L,F) = j (8)

Given a D dimensional feature vector F = {x1, x2, ..., xD},
a decision tree h is a collection of nodes ni organized in a
hierarchical tree structure. Node can be a split node or a terminal
leaf node. Assuming a binary decision tree, for each split node ni,
the splitting function f(F , πi, ϕi) can be represented as:

f(F , πi, ϕi) =

{
1 if Fπi > ϕi

0 if Fπi < ϕi
(9)
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Fig. 7: Evaluations on SmartMask

where πi ∈ {1, ..., D} is feature index and ϕi is the threshold
to divide two classes. For privacy level labels J , prediction result
j ∈ J of the decision tree h can be formulated as decision:

d(u, j) = 1 (10)

while
d(u,J /{j}) = 0 (11)

In training phase, decision tree h grows with a number of
features Fk (⊂ F ) specified at each node ni. The Fk features are
selected at random out of the F . The best splitting on these Fk

is used to split the node and form splitting function f(Fk, πi, ϕi)
(which is introduced above). The criterion of information gain I(·)
is taken as reference when splitting the node. Feature index π∗

i and
threshold ϕ∗

i can be chosen as:

π∗
i , ϕ

∗
i = argmax

π,ϕ
I(Fk, π, ϕ) (12)

The splitting ends when a predefined depth is reached or a leaf is
reached.

In prediction phase, given a feature vector as input, the tree
is traversed according to the Equation 9 until a leaf is found. To
obtain the result of prediction, the majority voting rule is applied:
label of the leaf is derived from the class with majority of training
samples that finished in this leaf. If the count is same for all
classes, the label is chosen randomly.

5.2.3 Implementation
In particular, we implement a Classification and Regression
Trees(CART) [28]. CART constructs a binary tree using the
features and thresholds that yield the largest reduction in entropy.
Features with larger entropy reduction are likely to be more
distinct among the classes. Hence they are chosen first while
building the decision tree from root to leaves. Then, we apply
reduced error pruning to reduce the tree size.

To validate the effectiveness, we manually set the privacy lev-
els of contexts in our Dataset II and randomly select half of users
as training set and use others as testing set. The precision, recall
and F1-score achieve 89%, 88% and 89%, which demonstrates
the effectiveness of our proposed privacy level learning. Fig 8
illustrates our decision tree model based on training data.

5.3 The Obfuscation Mechanisms in SmartMask
There is a large body of research works on location obfuscation
algorithms [29], [30]. We believe the novel location obfuscation
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Fig. 8: Decision tree model for learning privacy levels

algorithm design is an important research topic and deserves sep-
arate research. We implement a hybrid obfuscation method based
on two different obfuscation techniques. The first obfuscation
technique was proposed in [29], which includes three basic obfus-
cation operators, radius enlargement, radius reduction and center
shifting. Given the local measurement Am = (xm, ym, rm)
returned by sensing technology where xm, ym are the coordinates
of the center of Am and rm is Am’s radius, we can achieve
an obfuscated area by random combination of the following
operations:
radius enlargement:

(xf , yf , rf ) = (xm, ym, rm

√
Rm

Rf
) (13)

radius reduction:

(xf , yf , rf ) = (xm, ym, rm

√
Rf

Rm
) (14)

center shifting:

(xf , yf , rf ) = (xm + dsinθ, ym + dcosθ, rm) (15)

where θ ∈ [0, 2π], d is a random distance generated in a range that
decided by privacy levels, Rm and Rf are two implementations of
the Relevance, which is defined in [29], of the local measurement
area Am and obfuscated area Af , respectively.

When privacy level is low or medium (or the LBS has a certain
requirement on the utility), SmartMask executes obfuscation by
randomly combining these obfuscation operators (low privacy
level means a slighter obfuscation than middle level). In the case
of high privacy level, the users don’t want to disclose their real
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locations in these privacy levels. So SmartMask adopts a simple
cloaking strategy that makes the obfuscation results deviated to
the nearest public and less sensitive region (e.g, shopping malls
or cinema). This technique is useful for defending malicious or
unwanted location requests.

5.4 Evaluation Results

Our evaluation is two-fold. To evaluate properties and merits of
SmartMask, we conduct another 3-week experiment, in which 15
volunteers on campus take part using the modified Android system
that incorporates SmartMask. In the first 2 weeks, we gather each
user’s location data to generate location profile. In the last week,
SmartMask begins to obfuscate each location request according to
location profile and users’ preferences. To evaluate effect of hiding
demographics of users in a large scale, we perform SmartMask’s
strategy on Dataset II.

5.4.1 Properties of SmartMask
Comparison of Obfuscation Mechanisms: For the two different
obfuscation mechanisms, we first consider the N-coverage rate
which reflects a user’s N most private places. As is shown in
Fig 7(a), SmartMask’s N-Coverage Rate decreases significantly,
but Random Obfuscation’s N-Coverage Rate doesn’t decrease.
This is reasonable because SmartMask shifts locations towards
some certain spots (public regions), which makes top N locations
invisible for adversary. In contrast, Random Obfuscation shifts
locations and disperses the distribution randomly, which won’t
decrease the coverage. So there are many chances that shifted
visits are still within top N locations and observed by an adversary.
The comparison of entropy and coverage rate in Fig 7(b) also
demonstrates the observation.

Next, we consider the relative entropy metric. It is obvious
that relative entropy of SmartMask greatly increases by 1.3 while
that of random obfuscation only increases 0.13. As is discussed
in section 3.3, relative entropy represents the difference between
distribution of shared locations and distribution of ground truth
locations. This result also proves that SmartMask performs better
in the aspect of hiding original location profiles.

Sensitivity Analysis: To further assess the effectiveness of
SmartMask, we test SmartMask with different obfuscation radii
ranging from 0m to 1000m. In Fig 7(c), the coverage rate does not
vary significantly, while the relative entropy increases apparently.
We can conclude that compared with original locations, probabil-
ity distributions of obfuscated locations vary significantly, which
leads to conspicuous change of location profile, so that the top N
locations can be hidden.

5.4.2 Privacy and Utility Trade-offs
Obfuscation techniques will lead to the decrease of the utility. To
evaluate decrease of the utility, we define the Utility metric as

Utility = 1− Min(Dist(lo, lr),MaxDist)

MaxDist
(16)

where lo represents the original location, lr represents the ob-
fuscated result, MaxDist represents the maximum deviation error
that the user could tolerate, which is set by users, and function
Dist() returns the distance of two locations. It is obvious that,
when the obfuscated result is the same as original location, the
Utility achieves the maximum value 1. When Dist(lo, lr) is no
smaller than MaxDist, the Utility is 0.

Fig. 9: Time delay Fig. 10: Energy overhead

To evaluate MSN utility, we further define EffectiveUtility as
the average utility of those locations which are not in top locations.
Since users care more about the LBS utility than privacy in these
locations, EffectiveUtility can accurately evaluate obfuscation’s
influence on MSN utility. Fig 7(b) shows that EffectiveUtility of
SmartMask is far larger than random obfuscation.

5.4.3 Demographics Hiding
We use our Dataset II to evaluate effect of demographics preserva-
tion. We set obfuscation radii as 100, 300, 500, 1000 respectively
and apply the same method as Section 4. The results are shown in
Table 3.

TABLE 3: Inference accuracy of demographics preservation
obfs.radii(m) 100 300 500 1000 no obfs.

Gender 0.57 0.56 0.54 0.47 0.73
Edu 0.62 0.61 0.57 0.51 0.76

Along with increase of obfuscation radii, which indicates
obfuscation strength, the metrics decrease accordingly. For a
moderate obfuscation radius, i.e. 500 meters, accuracy of Gender
decreases 19% and accuracy of Education obviously decrease
19%. These results indicate SmartMask is useful to reduce prob-
ability that an attacker successfully infers the targeted user’s
demographics. It must be admitted that SmartMask can’t preserve
demographics to the extent of random guess. This result is reason-
able because our goal is to achieve trade-off of privacy and service
quality instead of totally balancing the distribution of each class
of people. As discussed in [13], [14], in the age of information,
privacy protection involves lots of aspects. Combining different
techniques, such as data preservation, anonymity, and obfuscation
is the best way to preserve privacy.

5.4.4 Performance and Energy consuming
We evaluate the performance of SmartMask by measuring time
delay to obfuscate locations. We simulate location access through
apps based on location profiles of real-world datesets. According
to our design, time delay should be likely to increase with the
increase of the scale of location profile. The evaluation results are
shown in Fig 9. Even in the worst case, average delay of 18.04ms
does not impact the application usability.

We evaluate the energy consuming by measuring the rate of
battery depletion in the following scenarios: no location access,
a load of location access of one request per 3 seconds based on
network, and a load of location access of one request per 3 seconds
based on GPS. Fig 10 shows the rate of battery depletion for each
load with SmartMask running and SmartMask not running. For a
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high location access rate (one request per 3 seconds), the battery
depletion rate with SmartMask running is very close to the case
without SmartMask running. So it is demonstrated that energy
consuming of SmartMask won’t affect usability.

6 LIMITATION

For the sake of our inability to access a large scale dataset in
mobile social networks, we recruit volunteers to perform the
real-world experiments to collect their shared locations, which
contribute to Dataset I. To have a larger dataset, we leverage Wi-
Fi access data on a university campus to simulate the location
sharing events which involve 22,843 users and 98 locations. While
this limitation may result in the bias of our dataset, we argue
that it does not invalidate our approach, or privacy inference
through shared locations. Our study is based on the observation
that the users sharing similar demographics usually have similar
mobility traces, which has been partially validated by previous
works under different contexts such as recommendation system
via mobility trajectories. Therefore, our proposed approach can
be applied to other datasets although the considered features or
location semantics may have some differences. Our study confirms
that the threat of leaking users’ sensitive demographic information
through the shared locations is realistic. As one of our future
works, we will consider a more resourceful adversary which can
collect a large scale shared locations in mobile social networks to
have a better understanding on the impact of the different users on
privacy leakage arising from location sharing.

7 RELATED WORK

A representative work to validate the geo-social mobility traces is
comparing Foursquare check-in data with users’ GPS data [15].
However, the previous work only considers the coverage rate. In
this study, we consider diversified MSNs and introduce both of
coverage rate and relative entropy to measure the distance of the
inferred and real mobility pattern. There are quite a few studies
addressing location privacy issues in social networks [5], [6], [7],
[8], [31]. However, little attention has been paid to further privacy
leaking issues arising from location sharing in MSNs. Similar to
some works which are from attackers’ perspective [32], [33], our
work firstly evaluates how much privacy will be obtained from an
attacker through location sharing in MSNs.

Issues in various social networks are well studied in recent
years [34], [35], [36], [37]. There are many other works which
study how to infer the victim’s trajectory and further re-identify
his other private information [11], [38], [39], [40]. Different from
the existing works, which are based on users’ real mobility trace,
this work aims to infer the sensitive information of the users from
their shared locations, which is only the partial view of the users’
real mobility pattern. In traditional online social networks, there
are also some research works on inferring users’ hidden attribute
based on their interest [26]. To this best of our knowledge, our
work is the first work to infer users’ demographics based on the
users’ shared locations.

Location privacy protection in location-based services is a
long-standing topic [16], [30], [41], [42], [43], [44]. The most
popular approach to achieve location privacy in LBS is utilizing
obfuscation techniques to coarse the spatial or temporal granu-
larity of real locations [45], [46], [47]. The service utility and
the privacy protection are always a trade-off. Different from

previous works, we propose a system level solution, which can
provide different privacy levels to different locations based on
an automatic location management system. SmartMask remains
compatible with the existing obfuscation techniques and com-
pliments existing solutions. LP-Guardian [48] is framework for
location privacy protection for Android smartphone users and
it leverages the solution of [30] to anonymize user’s locations.
SmartMask is complementary to LP-Guardian; it learns users’
privacy preferences and automatically assigns different privacy
levels to achieve the balance of the privacy and the utility.

Privacy-aware and context-based systems become hot topics
recently [49], [50]. L. Li et al [49] proposed system uses a
classifier to learn the owner’s finger movement patterns to achieve
continuous and unobservable re-authentication for smartphones.
DeepDroid [50] extract the context information to enforce a
fine-grained policy on Android devices. Different from previous
works, SmartMask is a system-level privacy protection framework,
leveraging location contexts to achieve context-driven privacy
management and fine-grained location privacy control.

8 CONCLUSION

The pervasiveness of location sharing in MSNs raises increasing
privacy concerns. In this work, we have quantitatively evaluated
the similarity of the shared locations and real locations based
on the real-world collected datasets. Our quantitative evaluations
indicate that although direct location sharing and indirect location
sharing only reveal 16% and 33% of the user’s real points of
interests (POIs), the attacker can exploit the similarity of the traces
among different users to infer their age, occupation, living place,
gender and education level at the successful rate of 69.2%, 53.8%,
54.5%, 73% and 76%. We then proposed SmartMask, a system-
level solution to thwart location privacy breaches without signifi-
cantly reducing the service quality. SmartMask can automatically
learn and generate privacy levels of locations based on location
contexts. As a general platform, SmartMask can incorporate with
other advanced obfuscation techniques to resolve a wider range of
location privacy issues.

TABLE 4: Justification of Utilizing Dataset II
Data sharing rate Demographic Precision Recall F1-score

20% gender 0.62 0.61 0.61
education 0.59 0.53 0.54

40% gender 0.63 0.62 0.62
education 0.63 0.59 0.59

60% gender 0.65 0.62 0.63
education 0.67 0.64 0.64

80% gender 0.65 0.62 0.63
education 0.70 0.68 0.69

100% gender 0.67 0.64 0.65
education 0.76 0.73 0.74
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APPENDIX
SIMULATION UNDER DATA SHARING RATES

In order to well justify the utilizing of dataset II, we define a metric
“data sharing rate” as the possibility that a user shares his location
in MSNs and tune this metric to show the simulation is reasonable.
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The precision, recall and F1-score of inferring demographics of
users are shown in Table. 4.
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