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Abstract—Although privacy leaking through content analysis
of Wi-Fi traffic has received an increased attention, privacy
inference through meta-data (e.g. IP, Host) analysis of Wi-Fi
traffic represents a potentially more serious threat to user privacy.
Firstly, it represents a more efficient and scalable approach to
infer users’ sensitive information without checking the content of
Wi-Fi traffic. Secondly, meta-data based demographics inference
can work on both unencrypted and encrypted traffic (e.g., HTTPS
traffic). In this study, we present a novel approach to infer user
demographic information by exploiting the meta-data of Wi-Fi
traffic. We develop a proof-of-concept prototype, Demographic
Information Predictor (DIP) system, and evaluate its performance
on a real-world dataset, which includes the Wi-Fi access of 28,158
users in 5 months. DIP extracts four kinds of features from real-
world Wi-Fi traffic and proposes a novel machine learning based
inference technique to predict user demographics. Our analytical
results show that, for unencrypted traffic, DIP can predict gender
and education level of users with an accuracy of 78% and 74%
respectively. It is surprising to show that, even for HTTPS traffic,
user demographics can still be predicted at a precision of 67%
and 72% respectively, which well demonstrates the practicality
of the proposed privacy inference scheme.

I. INTRODUCTION

The wide deployment of public wireless access points and
the prevalence of portable mobile devices allow people to
have ubiquitous wireless access to the Internet. According to
research by iPass, it is estimated that by 2018 there will be over
340 million public Wi-Fi hotspots globally. It is also expected
that the number of Wi-Fi-enabled devices will grow to more
than 7 billion by 2017 [1]. Compared with 3G/4G services,
Wi-Fi access is one user-preferred connectivity option when
using popular applications, such as Skype, Netflix or Facebook
due to its superiority of cost and connectivity.

While public Wi-Fi provides convenience and free access, it
may potentially pose a serious threat to the privacy of mobile
users by leaving their computer and other electronic devices
open to hacking. Even though there exist a series of security
solutions which provide link-to-link security (e.g., WPA2-
AES) and end-to-end encryption (e.g., HTTPS), mobile users
are still facing a big security challenge due to the lack of secu-
rity protection, inappropriate implementation of security pro-

tocols, and untrusted/fake hotspot service providers. Existing
research reveals potential privacy leakage in public hotspots by
examining user end activities such as web browsing, search
engine querying and smartphone apps’ usage [2]. Most of
existing studies are based on the assumption of unencrypted
traffic or a full knowledge of user behaviors and they cannot
work in the case of incomplete information [2]–[4].

In this study, we raise the following question: can an
attacker infer the sensitive information (e.g., gender, age,
education) of targeted users by observing the meta-data of
Wi-Fi traffic (e.g. IP, Host) ? The answer to this question
is not straightforward. Firstly, mobile users usually stay at
hotspots for short durations and thus public Wi-Fi traffic
represents a partial view of its full traffic. This problem
is more challenging in the case that a certain percent of
websites utilizing HTTPS protocol to encrypt the browsing
traffic, which prevents any external observer from accessing
the traffic contents. According to a recent report in 2015,
HTTPS traffic reaches 46% for browser traffic (increased 7%
in 12 months) and 61% for app traffic (increased 9%) [5]. Due
to these reasons, by eavesdropping and analyzing the content
of Wi-Fi traffic, less than 10% mobile users have their gender
information leaked out [2].

In this study, we answer the question above by studying
how to infer user demographic information from the meta-data
of Wi-Fi network traffic. The proposed approach is motivated
based on the observation that even for the encrypted traffic,
it is still possible for the eavesdropper to obtain the meta-
data of Wi-Fi traffic, which leaves a new attack interface for
the insider attackers (e.g., fake/untrusted service providers)
and external attackers (e.g., external hackers who break the
password). Our insight is that users sharing the similar at-
tributes will have similar network characteristics. To achieve
this, we extract four kinds of attributes which can create
distinct signatures for different demographics. Then, we pro-
pose a novel Random Forest based demographic information
inference scheme and develop a proof-of-concept prototype
system named Demographics Information Predictor (DIP). Our
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study is based on a large real-world dataset which involves 98
Wi-Fi access spots and 28,158 users. The contributions of this
work can be summarized as follows:

• Based on the large-scale real world dataset, we demon-
strate that the network traffic originated from users with
different demographics has distinct signatures. We extract
four kinds of features which can create distinct signatures
for different demographics.

• We propose a Demographics Information Predictor (DIP)
system that can learn users’ demographics by just passive-
ly monitoring users’ traffic flows. DIP employs a novel
Random Forest based prediction technique to predict
users’ demographics. We evaluate DIP using our real-
world Wi-Fi traffic dataset and show that DIP can predict
gender and education level with an accuracy of 78% and
74%, respectively.

• We also measure to what extent the demographics will be
leaked through encrypted network traffic, such as HTTPS
traffic. We consider the lower bound of information
leakage, i.e., assuming all HTTP traffic are encrypted as
HTTPS traffic. Surprisingly, users’ demographics can still
be predicted at precision of 67% and 72%.

To the best of our knowledge, this is the first work that uses the
large scale real-world data set to measure the privacy violations
in the meta-data of the Wi-Fi network traffic. This study aims
to call for the attention of the society and shedding light on
the measures of protecting Wi-Fi traffic.

The rest of paper is organized as follows. Section II
discusses related research works. Section III introduces real-
world traffic leakage, research motivations, a traffic privacy
model, and our real-world dataset. Section IV presents our
DIP system and describes its functions. Section V discusses
feature selection and prediction model in detail. In section
VI, we evaluate the privacy leakage in different scenarios.
Section VII discusses limitations and mitigation suggestions
and Section VIII concludes this paper.

II. RELATED WORKS

This paper is to understand the level of user privacy leakage
through meta-data analysis of Wi-Fi traffic. The presented
work is related to the following areas of research.

Network Traffic Privacy. Privacy leakage in network traffic
is receiving increasing attention. Cheng et al. [2] captured
Wi-Fi network traffic at 20 airport hotspots in four different
countries. Their analysis reveals that two thirds of travelers
leak privacy sensitive data by DNS queries, web browsing,
or querying search engine. Das et al. [3] present PCAL
(Privacy-Aware Contextual Localizer) which can learn users’
contextual locations (such as residence and cafe) just by
passively monitoring user’s network traffic. Xia et al. [4] focus
on association between the browsing traces and OSN’s ID of
a user. They present a framework to correlate the user identity
extracted from the social network traffic to its online behavior.
Konings et al. [6] collected the mDNS announcements in a
semi-public Wi-Fi network at a university. Their study shows

that, of 2,957 unique device names, 59% contained both real
names of users, with 17.6% containing first and last name
of the user. Yan et al. [7] propose a novel privacy-preserving
scheme against traffic analysis in network coding. Even though
network traffic is encrypted, privacy violation is still possible
[8], [9]. Different from previous works, our work takes a new
approach to infer user demographic information by exploiting
the meta-data of Wi-Fi traffic.

Demographics Inference. Inference on demographic infor-
mation has been discussed using various signatures. Hu et al.
[10] extract content-based features and category-based features
from webpage click-through logs to infer users’ gender and
age. Seneviratne et al. [11] employ Naive Bayes model and
Support Vector Machine to reveal users’ gender from their
installed apps. Schwartz et al. [12] apply differential language
analysis Facebook on status update messages to predict user
demographics. Bi et al [13] show how user demographic traits
such as age and gender, and even political and religious views
can be efficiently and accurately inferred based on their search
query histories using a model trained from Facebook likes.
Chaabane et al. [14] infer OSN users’ undisclosed (private)
attributes (e.g. gender, relationship, age and country) by using
public attributes (e.g. hobby) of other users who share similar
interests. Different from previous works, our work selects Wi-
Fi traffic meta-data which can be sniffed passively as features
to infer demographics leakage.

III. MOTIVATIONS AND PROBLEM FORMULATIONS

A. Traffic Leakage in Real World

Previous research demonstrates the insecurity of public Wi-
Fi, which may potentially leak user privacy information from
Wi-Fi traffic. In the following, we summarize various cases
which lead to different Wi-Fi traffic leakage.

1) Public Open Wi-Fi or Rogue Hotspots: Although there
are existing Wi-Fi security solutions such as 802.11i proposed
in 2004, open public Wi-Fi networks without any protection
are still popular due to the free and simple wireless con-
nections. In fact, a typical selling-point of many restaurant
chains nowadays is that they offer free Wi-Fi connections to
customers. In an open public Wi-Fi environment, wireless con-
nections are vulnerable to Man-in-the-middle (MITM) Attack,
which allows the attacker to tap into wireless channels and
obtain the Wi-Fi traffic.

Unauthorized ‘rogue’ hotspots allowing back-door access
to the network, and honeypot APs used in attacks that lure
end users to connect to unsecured external networks, represent
two other kinds of threats to Wi-Fi traffic. Rogue Wi-Fi
Containment is not an easy job in practice due to the great
difficulty of accurate Rogue Wi-Fi detection. There has been
significant interest in the industry on improving the security
against rogue hotspot, e.g., using certificates to authenticate
the Wi-Fi [15]. However, it is far from being widely deployed
in practice.



Fig. 1: Overview of framework

2) Security Enabled Wi-Fi without Proper Implementation:
IEEE 802.11i provides important security features for Wi-
Fi. However, without appropriate implementations, security
vulnerabilities can still be exploited by the attackers. For
example, using a pre-shared key (PSK) can be strong, but
using a single passphrase limits security to its weakest link,
the human factor. Further, protocol attacks ranging from key
discovery to multi-layer Evil Twin impersonation are periodi-
cally being discovered [16], [17]. In the case of being hacked
by the adversary, the Wi-Fi traffic will also be exposed to the
attackers.

3) Untrusted Service provider: For Wi-Fi service provider,
an important business model is advertisement. According to
a report of Cisco, from mobile advertisement, Wi-Fi service
provider is achieving a 24 Cost per mille (CPM) in a mall
in Canada and another is commanding 40 CPM for a mall
in Singapore. Targeted advertisement is expected to be an
important way for improve the CPM while target ad is based
on user location and demographic information. Therefore,
service providers have the incentive to collect user traffic and
infer corresponding sensitive information.

B. HTTPS traffic

Utilizing SSL to encrypt traffic data is regarded as an
important approach to enhance the Wi-Fi security. With the
popularity of HTTPS protocol, more and more websites em-
ploy HTTPS protocol to secure communication between server
and client. HTTPS is the result of layering the HTTP on top of
the SSL or TLS protocol, thus adding the security capabilities
of SSL/TLS to standard HTTP communications. The main
goal of HTTPS is to provide authentication of the visited
website and to protect the privacy and integrity of exchanged
data.

With HTTPS, the content of packets, including the headers,
request URL, query parameters, and cookies (which often
contain identity information about the user), are successfully
masked via encryption, which is shown in the red box of Fig
2. However, HTTPS cannot hide IP addresses, port numbers
and some statistics, such as Seq and Len, because they are
a part of the underlying TCP/IP protocols. In practice, this
means that attackers can still acquire the IP address and port
number of the Wi-Fi access point or the web server that one
is communicating with, as well as the duration of session and
amount of data transferred of the communication, as shown in
the green box of Fig 2.

Fig. 2: A demo of HTTPS traffic packet

C. Research Motivations

Previous studies have investigated the privacy leakage prob-
lem by having a detailed analysis on Wi-Fi traffic contents
[2]. Different from previous works, we propose a demographic
inference system which can predict user demographic informa-
tion through meta-data analysis of Wi-Fi traffic. The proposed
system is expected to have the following desirable features.

• More Scalable: To address the severity of privacy leakage,
the proposed system should cope with a large amount of
network traffic and predict demographics of a large group
of people.

• Larger Target Coverage: In previous works which study
privacy leaking based on network traffic contents, only
a small percent (less than 10%) of users are found that
their demographic privacy is leaked [2]. The proposed
system exploits meta-data of Wi-Fi traffic to predict user
demographic information and is expected to work well in
the case of lack of complete information.

• HTTPS Traffic Tolerance: HTTPS traffic represents a
great challenge for content based traffic analysis since the
encrypted Wi-Fi data are immune to the traffic analysis
except the meta-data. Therefore, the proposed system
is expected to exploit the available meta-data, which
cannot be protected by HTTPS protocol, to infer user
demographic information.

D. Traffic Privacy Model

In our problem, we consider a set of users U who generate
a series of traffic packet P within a time duration T . P
consists of a sequence of traffic packets P = {p1, p2, ..., pm},
where a traffic packet pi ∈ P contains meta-data fields
Fi = {f1, f2, ..., fn} in different layer’s protocols, such as
“MAC address”, “ip address”, “Host”, “User-agent”, “Seq”,
“Len”. We model the traffic privacy profile of a specific user
u as a function extracting the meaningful fields F from traffic
packets P , i.e. αu : P → F .



An attacker, under different attack scenarios, may capture
a subset of whole traffic packets, Pcap ⊆ P , from one or
more sources of network traffic L = {l1, l2, ..., lq}. And fields
Fcap ⊆ F extracted from Pcap will be exposed to the attacker
and leak privacy information directly or indirectly, from the
perspective of an attacker. Under different conditions, Fcap

contains different kinds of contents and different amount of
information. For example, if an attacker is interested in MAC
address, IP address, host and User-agent in traffic packet, the
attacker can observe all of them in a HTTP packet, i.e. Fcap =
{MAC, IP, host, User-agent}, while he can’t observe host and
User-agent in a HTTPS packet because the application level
was encrypted in HTTPS protocol. Nevertheless, the attacker
can still observe the MAC address and ip address in a HTTPS
packet, i.e. Fcap={MAC,IP}.

Using Fcap, the goal of the attacker is to infer demograph-
ics, which is considered privacy leakage issue of the mobile
users in this work. Formally, it is a function β translating
fi ∈ F into information which can be used to infer demo-
graphics information DI: β(fi) → DI .

E. A Real-world Traffic Dataset

We obtain network traffic from 98 Wi-Fi hotspots deployed
on a university campus. The real-world Wi-Fi traffic dataset
contains 28,158 users’ network traffic with a duration of 5
months (2014.09-2015.01). It contains more than 12.7 million
Wi-Fi connection sessions. A session here is defined as a
continuous time duration in which a user connects to Wi-Fi
before the timeout. If timeout for more that 5 minutes, the
next connection is considered as a new session.

To preserve privacy of users, we sanitize the traffic data first.
We anonymize users’ id and remove personal identity related
information. After sanitization, each session contains meta-
data including connection start time, duration time, ip address,
server host and some statistics such as packets size, HTTP
flow number and so on. Meanwhile, the dataset also provides
anonymized user attributes such as gender and education level,
which provides the ground truth to evaluate the performance
of the DIP system.

IV. DEMOGRAPHIC INFORMATION PREDICTOR (DIP)

In this section, we present Demographic Information Predic-
tor (DIP) system, which can extract information from traffic
and predict users’ demographics based on the meta-data of
Wi-Fi traffic. DIP aims to automatically extract information
from traffic and generate profile signatures to predict users’
profiles. If untrutsted service providers or external adversaries
are able to monitor traffic passively, they can exploit DIP to
predict user’s profile. Our insight is based on the fact that
it is highly possible that users having similar demographics
have similar network usages [10]. Network access behaviors
and mobility characteristics will also share the similar demo-
graphic features, which is supported by the previous work on
web browsing analysis. The system architecture is shown in
Fig. 3.

Fig. 3: DIP system architecture

A. Traffic Process Engine

DIP collects information which is used to identify users’
profiles. Given a series of traffic as input, DIP parses traffic
packets and extracts targeted fields. DIP uses MAC addresses
to identify devices and aggregates flows from the same devices
or the same ip addresses. Then DIP filters out packets with
targeted meta-data such as Host, User-agent and URL in HTTP
protocol and preserves the data sequence of the users. For
further analysis, DIP also handles some procession includ-
ing aggregating domains addresses from the same service
providers. For example, “a.domain.com” and “b.domain.com”
are two addresses from the same application’s different servers,
we aggregate them according to the text similarity. So DIP can
be deployed either in an ISP or a Wi-Fi hotspot to perform
the traffic processing in a real time manner.

B. Profile Signature Generator

Profile Signature Generator is used to extract features for
predicting users’ profiles. With information generated from
Traffic Process Engine, we classify features into four cat-
egories: application based features, category based features,
location based features and statistical features. Application
based features are extracted from Host field of HTTP protocol.
It usually describes which websites users visited or which
applications of smartphone users used. Application based fea-
tures reflect application usage of users and we further classify
applications into different categories, such as communications,
news, shopping, etc. Location based features describe where
a user gets access to a network. Location based features
can be extracted from IP address because IP address of the
access point reflects coarse location of a user and is highly
correlated to contextual location [3]. Location based features
can be viewed as mobility of users. Statistical features describe
statistic of traffic flows or traffic packets, such as number of
HTTP requests per session, size of a HTTP packets, duration
of a session.



0%

20%

40%

60%

80%

100%

male female

(a) High application tendencies in gender

0%

20%

40%

60%

80%

100%

bachelor master doctor

(b) High application tendencies in education level

0%

20%

40%

60%

80%

100%

male female

(c) High category tendencies in gender

0%

20%

40%

60%

80%

100%

bachelor master doctor

(d) High category tendencies in education level

Fig. 4: Application based features and category based features

C. Profile Predictor

Once Profile Signature Generator generates different kinds
of features, Profile Predictor uses features to predict demo-
graphics of users. The Profile Predictor employs supervised
machine learning techniques to learn a machine learning model
and predict users demographics. The prediction model of
Profile Predictor is based on Random Forest model [18], which
runs efficiently on large data bases and can handle thousands
of input features without feature selection. In this work, we
assume part of users’ information is available in public and
can be used to train the model. The generated model can be
saved for future use in other scenarios.

V. DIP FEATURES AND PREDICTION MODEL

In this section, we present the core components of DIP
in details, which mainly consists of feature selection and
prediction model.

A. Features selection

1) Application-based Features: Application-based features
are represented as hosts in HTTP protocol in our problem.
Application-based features indicate which websites users vis-
ited and which apps users ran or services users enjoyed. Since
there are a large number of hosts in our dataset and some of the
hosts are from the same service providers or organizations, we
aggregate them according to hosts similarity, and only select
applications used by at least 10% of the users.

Certain applications show strong tendency towards attributes
of demographics, such as gender and education. To character-
ize the tendency, we calculate the entropy of each application
with respect to attributes. Let A be a kind of demographic
attributes, e.g. gender A = {male, female} or education

A = {bachelor, master, doctor}. Then entropy ε can be
presented as:

ε(A) = −
∑
a∈A

θ(a)log2θ(a) (1)

where θ is the user distribution of an attribute.
Entropy measures the uncertainty of each attribute. Entropy

has the maximum value when the probability of each tendency
follows a uniform probability and has the minimum value
when the probability of one tendency is dominant. So lower
entropy of an application indicates it is distinguishable with
respect to an attribute. Since the number of users of each
attribute is imbalance, we under sample users of each kind
of the attributes to keep balance. Fig. 4(a) shows the 5 appli-
cations with lowest entropy for male users and female users
respectively. In general, Game and Sport are more popular
among male users while Fashion and Shopping are more
popular among male users. Fig. 4(b) shows the 5 applications
with the lowest entropy for the users with education level of
bachelor, masters and doctors respectively. It can be observed
that bachelors are more interested in Electronic Product, while
Job is most popular among masters and Marriage among
doctors.

2) Category-based Features: We classify applications in
our dataset into 39 categories. To evaluate tendency of each
category, we calculate entropy again. Fig 4(c) shows the 10
categories with lowest entropy for the gender attribute. It
shows that Sports, Finance and Real Estate are more popular
in male users and Women, Entertainment are more popular
in female users. Similarly, Fig. 4(d) shows the 10 categories
with lowest entropy for education level attribute. It shows
that Social Networks, Job and Finance are most popular in
bachelors, masters and doctors, respectively. The results show
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Fig. 5: Cumulative Distribution Functions of statistical features

that the category-based features can also be used to distinguish
different groups of users.

3) Location based Features: Different Wi-Fi access points
have different IP addresses. We can extract IP addresses from
IP layers of traffic packets so we can know where users access
Wi-Fi access points. Location is a strong indicator of users’
demographics. On one hand, previous work has pointed out
that IP addresses of Wi-Fi access points are highly correlated
to locations of users [3]. On the other hand, location based
features can be viewed as mobility of users, and the mobility
is highly correlated to users’ profile attributes such as hobbies,
habits and relationship [19]–[21]. Thus location based features
are supposed to show a strong correlation with demographics.

4) Statistical Features: As we discussed above, users’ de-
mographic information shows correlation with network usages,
and similar Internet applications exhibit similar characteristics
in the aggregated traffic. Implicitly, statistical features reveal
distinct information that can distinguish users with different
demographic information. For examples, Fig. 5(a) and Fig.
5(d) show different time duration per flow of different groups
of users. Fig. 5(a) shows that male users have higher time
duration than female users do. It reflects that male users
will stay a longer time for each network access. Similarly,
Fig. 5(d) shows that master students have the highest average
time duration, and bachelor students’ time duration is slightly
longer than doctor students’ time duration. Fig. 5(b) and
Fig. 5(e) show average HTTP number per flow of different
attributes. As we can see, male users have higher HTTP
number per flow than female users. Master students have
the maximal average HTTP number per flow, and bachelor
students’ HTTP number per flow is slightly larger than doctor
students’ HTTP number per flow. Similarly, Fig. 5(c) shows
that male users have higher HTTP size per flow than female
users. Fig. 5(f) shows that bachelor students have the minimal
HTTP size per flow, and master students’ HTTP size per flow

is slightly larger doctor students’ HTTP size per flow.

B. The proposed Prediction Model

To effectively predict the attributes of demographic informa-
tion in our problem, we propose a novel prediction approach,
which is based on Random Forest (RF) [18], a machine learn-
ing model. There are many reasons of choosing random forest
model in our study. Firstly, RF model randomly chooses items
in training set so it is effective to avoid over-fitting. It chooses
part of features for each tree, so it can cope with high feature
dimension and does not need feature reduction. Secondly,
many features we selected are dependent on each other with
non-linear relationship. Decision trees in Random Forest are
employed to address this issue and Random Forest can detect
feature interactions. Thirdly, Random Forest runs fast and
efficiently on large data bases. Significant improvements in
classification accuracy come from generating an ensemble of
trees and letting them vote for the most popular class.

1) Algorithm: Based on the traffic privacy model which
is presented in Section III, our prediction model takes a set
of users U , whose demographic information is known by the
adversary, as prior knowledge. Then the model aims to predict
demographics of some other users u. So it can be formulated
as a classifier Ψ which predicts demographic class label j ∈
J = {1, ..., J} at the input u over independent replicates of
the learning set U , which is denoted as:

Ψ(u,U) = j (2)

Our Random Forest based classifier consists of a collection
of decision trees {hk(u,M), k = 1, ...}, where the M
are features extracted from packets fields Fcap, which are
introduced in previous sections. Then each tree casts a unit
vote for the most popular class at input u.

Given a D dimensional feature vector Mk = {m1, ...,mD},
a decision tree hk is a collection of nodes ni organized in



a hierarchical tree structure. Node can be a split node or
a terminal leaf node. Assuming a binary decision tree, for
each split node ni, the splitting function f(Mk, πi, ϕi) can
be represented as:

f(Mk, πi, ϕi) =

{
1 if Mπi > ϕi

0 if Mπi < ϕi

(3)

where πi ∈ {1, ..., D} is feature index and ϕi is the threshold
to divide two classes. For demographic class labels J , predic-
tion result j ∈ J of the decision tree hk can be formulated
as decision:

dk(u, j) = 1 (4)

while
dk(u,J /{j}) = 0 (5)

Given an input set u with a size of N and feature vector
M, the detailed algorithm is as follows:

• The classifier Ψ first randomly samples N items uk with
replacement from the u. This sample will be the training
set for growing a tree hk(uk,M).

• Each decision tree hk grows with a number of features
Mk (≪ M) specified at each node ni. The Mk features
are selected at random out of the M. The best splitting
on these Mk is used to split the node and form splitting
function f(Mk, πi, ϕi) (which is introduced above). The
criterion of Gini impurity I(·) is taken as reference when
splitting the node. Feature index π∗

i and threshold ϕ∗
i can

be chosen as:

π∗
i , ϕ

∗
i = argmax

π,ϕ
I(Mk, π, ϕ) (6)

• Each tree grows to the largest possible extent and does not
prune. For all trees {h(uk,Mk), k = 1, ...}, the classifier
performs majority voting for classes J to obtain final
result cfin:

cfin = argmax
k=1

∑
dk(Xk, j) (7)

VI. EXPERIMENTS AND EVALUATIONS

In this section, we present our real-world experiments and
analysis results.

A. Experiments

To analyze privacy leakage in different scenarios, we con-
sider different time periods T , different leakage source L
and packet fields F as introduced in Section III. For each
group of experiments, we randomly selected 50% of users
data as training set and 50% as testing set, and we represent
each user as a feature vector using the features mentioned in
Section V-A. To measure an average performance, each group
of experiments is repeated for 5 times. Precision, Recall and
F1-score, which are well known and broadly used metrics in
classification problem, are used to evaluate the results. For
each class, Precision is the number of true positive results
divided by the number of all positive results; Recall is the

number of true positive results divided by the number of
positive results that should have been returned; F1-score is
defined as F1 = 2 · precision·recall

precision+recall . A dummy classifier that
predicts by randomly guessing was used as the baseline. Thus
for gender prediction, the baseline of accuracy is 50% and for
education level prediction, the baseline of accuracy is about
33%.

B. Evaluations

1) Short time v.s. Long time (Time variation): In practice,
network traffic leakage may last for different time durations.
An attacker can choose to sniff Wi-Fi traffic for a long time
while he can also sniff Wi-Fi for a short time. Similarly, a
victim can connect to a compromised Wi-Fi for a long time or
a while. So we consider different time duration of sniffing the
traffic corresponding to different traffic leakage scenarios. To
simulate different time duration, we randomly select different
percentage of traffic of each user from 10% to 100%. The
results of predicting gender and education are shown in Table.
I respectively.

TABLE I: Inference with different percentage of traffic
Gender Education

% Acc. Pre. Rec F1 Acc. Pre. Rec. F1
20% 0.75 0.75 0.75 0.71 0.74 0.72 0.74 0.71
40% 0.76 0.76 0.76 0.73 0.74 0.72 0.74 0.71
60% 0.77 0.77 0.77 0.74 0.73 0.71 0.73 0.70
80% 0.77 0.78 0.77 0.75 0.74 0.72 0.74 0.71
100% 0.78 0.78 0.78 0.76 0.74 0.73 0.73 0.71

The results show that even only a small part of Wi-Fi traffic
reveals users’ demographics with a high accuracy. For gender
attributes, accuracy, precision, recall and f1-score with 10% of
traffic are 0.73, 0.73, 0.73 and 0.69 respectively, and for edu-
cation level attributes, accuracy, precision, recall and f1-score
with 10% of traffic are 0.74, 0.71, 0.74 and 0.70 respectively.
Meanwhile, different attributes show different tendencies when
the percentage of traffic increases. For gender attributes, all
metrics increase while for education level attributes, metrics
are not obviously affected by the amount of traffic. It reflects
that the small parts of traffic is enough to reach a considerable
accuracy of education prediction. Traffic leakage in a short
time also poses a serious threat to users privacy.

2) One location v.s. All locations: In the real-world attacks,
an attacker can sniff one or more Wi-Fi hotspots and a victim
may also connect to one or more Wi-Fi hotspots. More sniffed
Wi-Fi hotspts means more information leaked. We classify
network traffic according to the sources of Wi-Fi hotspots and
perform demographic inference by traffic from different Wi-Fi
hotspots. As shown in Fig. 6(a) and Fig. 6(b), metrics increase
when the number of sniffed Wi-Fi hotspots increases.

To evaluate a lower bound on privacy breach, we consider
the scenario that an attacker only gets access to one Wi-Fi
hotspot to sniff the traffic. The results are illustrated in Fig.
7(a) and Fig. 7(b). They show the minimum, first quartile
(bottom edge of the box), median, second quartile (top edge of
the box) and maximum of metrics values using network traffic
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Fig. 6: Inference with traffic from different number of Wi-Fi

from a single Wi-Fi hotspot to predict. For gender prediction,
the median precision exceeds 60% and the maximum precision
exceeds 75%. For education level predication, the median
precision exceeds 50% and the maximum precision is close
to 70%. The results show that the attacker has a high chance
of breaching user privacy even if only one Wi-Fi hotspot is
sniffed.

TABLE II: Results of prediction in HTTPS traffic
Demographics Features Precision Recall F1-score

Gender location-based 0.67 0.64 0.65
statistics 0.62 0.69 0.63

Education location-based 0.72 0.74 0.72
statistics 0.49 0.54 0.48

3) Encrypted Traffic: To further analyze the extent of pri-
vacy leakage through network traffic, we consider the scenario
that traffic is encrypted with HTTPS. As discussed in Section
III, not only plain text data but also some semantic fields are
encrypted, which prevents the direct privacy leakage due to
content analysis on network traffic. Whereas, there is still
information that can be extracted from a HTTPS-enabled
network traffic packet, such as MAC address, IP address
and some statistics. So even in HTTPS network traffic, it is
possible to infer a user’s demographics by observing the meta-
data of Wi-Fi traffic. We use IP address to generate location
features and summarize statistics to get statistical features, as
introduced in Section V. We assume that all HTTP packets
are encrypted as HTTPS, which is a lower bound of privacy
leakage. The results of demographics prediction are shown in
Table II.

The results show that even in encrypted traffic, demograph-
ics can still be effectively predicted. Location-based features
reach high precisions, i.e. 0.67 for gender attributes and
0.72 for education attributes. It is obvious that location-based
features perform better than statistical features. It is reasonable
because mobility directly relates to person’s demographics
while statistics of traffic packets are implicit reflection of
network activities and not so distinguishable for demographics.
But if we only consider predicting results of statistics features,
the precision still achieve 0.62 for gender attributes and 0.49 of
education attributes, which are higher than baseline with only
12% and 16% accuracy. It shows that relying on encryption
cannot address all of the problems and the attacker can still
infer the users’ demographics by observing the encrypted data.
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Fig. 7: Inference with traffic from single Wi-Fi

C. Comparison of Prediction Models

In the last part of this section, we compare the results
of different prediction models in comparison to the Ran-
dom Forest. We tried a set of basic classification algorithms
(Decision Tree, Perception, Support Vector Machine, Naive
Bayes, K-Nearest Neighbors) to compare the performance. We
implemented these algorithms using scikit-learn package [22]
of Python. The results in Table. III show only Support Vector
Machine (SVM) performs better that Random Forest. But the
time consumption of Support Vector Machine is 12.79 times
longer than the time consumption of Random Forest. So it is
a trade-off between the performance and cost.

TABLE III: Inference with different prediction models
Model Attribute Precision Recall F1-score

Decision Tree Gender 0.70 0.70 0.70
Education 0.68 0.64 0.65

Perception Gender 0.77 0.73 0.74
Education 0.71 0.65 0.67

SVM Gender 0.79 0.78 0.79
Education 0.76 0.72 0.73

Naive Bayes Gender 0.76 0.76 0.76
Education 0.61 0.63 0.6

K-Nearest
Neighbors

Gender 0.69 0.69 0.69
Education 0.63 0.66 0.63

Random Forest Gender 0.77 0.78 0.77
Education 0.72 0.74 0.71

VII. DISCUSSION

In this section, we discuss limitation in our work and
mitigation for the demographic inference.

A. Limitations

For the sake of our inability to access the generic Wi-Fi
network traffic, our dataset only includes the Wi-Fi traffic on
a university campus. While we confess that this limitation
may result in the bias of our dataset, we argue that it does
not invalidate our approach – privacy inference through meta-
data analysis. Our study is based on the observation that
the users sharing similar demographics usually have similar
classification features, which has been validated by previous
works under different contexts such as web browsing, smart-
phone apps, and mobile social networks [10], [11]. Therefore,
our proposed approach can be applied to other datasets (e.g.,
public Wi-Fi traffic dataset) although the considered features
may have some differences. Our study confirms that the threat



of leaking sensitive user information through the meta-data
of Wi-Fi traffic is realistic. As one of our future works, we
will consider a more resourceful adversary which can collect
public Wi-Fi traffic in order to understand the level of privacy
leakage through public Wi-Fi data.

B. Mitigation

In the following, we discuss several privacy enhancing
techniques that could be used to defend against our traffic
demographics inference attack.

• VPN or Tor: VPN or Tor: A potential strategy to mit-
igate demographics inference attack in Wi-Fi traffic is
to prevent the attackers from obtaining the meta-data of
network traffic. For example, a user can exploit virtual
private network (VPN) or anonymity network Tor to pre-
vent the attackers from tracking the routing information
or collecting the traffic characteristics. However, such
solutions may incur significant network overhead and
suffer from reduced network performance.

• Randomized MAC: Another strategy of thwarting the
demographics inference is anonymizing the users via
MAC Randomization, which prevents the attackers from
linking a specific user with his Wi-Fi traffic. MAC
randomization has been introduced on iOS 8 operating
system. With MAC randomization, a user can change
his MAC address whenever accessing a new Wi-Fi.
We perform an experiment by using this strategy. Our
experiment results show that it can reduce the accuracy
of the proposed demographic inference attack by 15% for
gender and 22% for education.

• Dummy Traffic: Dummy traffic is a technique to defend
against statistical analysis attack [23]. Therefore, adding
dummy packets with random statistics helps hiding user
traffic characteristics under the proposed demographic
analysis. Our experiments show that, by simply adding
10% of dummy traffic, the inference accuracy is de-
creased by 9% for gender and 13% for education. Due
to the high speed and low expense of Wi-Fi network
accesses, adding dummy traffic packets only causes a
limited impact on network performance.

In practice, the users can adopt multiple defending strategies to
enhance their privacy under the demographic analysis attack.
It is noted that there is always a tradeoff between privacy and
utility. A practical security defense strategy should strike a
balance among multiple factors, including users’ convenience,
privacy requirement, and network performance.

VIII. CONCLUSION

In this paper, we use Wi-Fi traffic from 28,158 users in 5
months to analyze demographics leakage and propose the De-
mographic Information Predictor (DIP) system. DIP extracts
four kinds of features from real-world Wi-Fi traffic and applies
machine learning technique to predict users’ demographics.
We consider different scenarios with different time durations,
traffic sources and whether data are encrypted or not. The

results show that the best accuracy of predicting gender and
education level achieve 78% and 74% respectively. Even in
encrypted traffic, i.e. HTTPS, users’ demographics can be
predicted at precision of 67% and 72%. The privacy leakage
through Wi-Fi network traffic should become a more serious
concern.
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