
PriMatch: Fairness-aware Secure Friend Discovery
Protocol in Mobile Social Network

Muyuan Li, Zhaoyu Gao, Suguo Du, Haojin Zhu
Shanghai Jiao Tong University, Shanghai, China

{leilmyxwz, oversky710, sgdu, zhu-hj}@sjtu.edu.cn,

Mianxiong Dong, Kaoru Ota
The University of Aizu
{mx.dong, k.ota}@ieee.org

Abstract—Mobile social networks are expected to substantially
enrich interaction with ubiquitous computing environments by
integrating social context information into local interactions.
However, in mobile social networks, the mobile users may face
the risk of leaking their personal information and their location
privacy. In this study, we first model the secure friend discov-
ery process as a generalized privacy-preserving interest/profile
matching problem. Then, we identify a new security threat
arising from existing secure friend discovery protocols, coined as
runaway attack, which is expected to introduce serious fairness
issue. To address this new threat, we introduce a novel blind
vector transformation technique, which could hide the corre-
lation between the original vector and the transformed result.
Based on it, we propose our fairness-aware privacy preserving
interest/profile matching protocol, which enables one party to
match its interest with the profile of another, without revealing
its real interest and profile and vice versa. The detailed security
analysis as well as real-world implementations demonstrate the
effectiveness and the efficiency of the proposed protocol.

Index Terms—Mobile Social Network, Friend Discovery, Pro-
file/Interest Match, Privacy Preserving, Fairness

I. INTRODUCTION

Mobile social networks are expected to substantially en-
rich interaction with ubiquitous computing environments by
integrating social context information into local interactions.
Location-aware mobile social networks such as Foursquare[1]
and Gowalla[2] provide the opportunity to leverage social
networking context within a local physical proximity using
mobile smart phones. As a valuable complement to web-based
online social networking, mobile social networks allow mobile
users to have more tangible face-to-face social interactions
in public places such as bars, airports, trains, and stadiums
[3]. Profile matching is more than important for fostering the
wide use of mobile social networks because finding the nearby
individuals of similar interests is always the first step for any
social networking.

However, the existing mobile social network systems pay
little heed to the security and privacy concerns associated with
revealing one’s personal social networking preferences and
friendship information to the ubiquitous computing environ-
ment. In particular, in mobile social networks, the mobile users
may face the risk of leaking their personal information and
their location privacy. Under this circumstance, the attackers
can directly associate the personal profiles with real persons
nearby and then launch more advanced attacks.

Recently, there are quite a few proposals for Private Profile
Matching, which allow two users to compare their personal
profiles without revealing private information to each other [4],
[5]. In a typical private profile matching scheme, the personal
profile of a user consists of multiple attributes chosen from
a public set of attributes (e.g., various interests[5], disease
symptoms[6], or friends[7] etc.). The private profile matching
problem could then be converted into Private Set Intersection
(PSI) [8], [9] or Private Set Intersection Cardinality (PSI-CA)
[10], [11]. In particular, two mobile users, each of whom
holds a private data set respectively, could jointly compute
the intersection or the intersection cardinality of the two sets
without leaking any additional information to either side.

However, there are quite a few challenges which make the
existing private profile matching solutions less practical in
applications. For example, similar to most of the online social
network applications, a mobile social networking user is ex-
pected to freely search its potential common-interest friends by
matching his interest with the personal profiles of the searching
targets rather than making the profile matching directly. This
could be well supported by the dating social networks, in
which a member may seek another member satisfying some
particular requirements (e.g., gender, age ranges or even living
location as in [12]). Further, the existing proposals are one-
way only and profile matching requires running a protocol
twice, with reversed roles in the second run. This two-pass
protocol may be exploited by the dishonest user or even a
malicious attacker to launch the runaway attack, in which one
that wants to learn another user’s interests but is unwilling to
reveal his own interests can simply abort the protocol in the
second round. This runaway attack incurs a serious fairness
issue. The runaway attack may be more challenging in the case
of separating user’s profile from his interest since matching the
users’ profiles and interests could only be achieved in the two
steps.

To solve the above mentioned challenges and thus further
enhance the usability of mobile social networks, we present
PriMatch, a novel fairness-aware secure friend discovery pro-
tocol. In PriMatch, a successful matching only happens in case
that the interests of both of the participants could match the
profiles of the others. In other words, no one can learn any
extra information from the protocol unless another participant
is exactly what he is looking for and vice versa. PriMatch is
motivated from a simple observation that if two vectors match,

978-1-4673-0921-9/12/$31.00 ©2012 IEEE

Globecom 2012 - Communication and Information System Security Symposium

738

they will still match no matter whether they are transformed
in the same way (e.g., add or substract a randomly generated
vector) or shuffled with the same order.

To achieve this goal, we introduce a novel Blind Vector
Transformation technique, under which each participant con-
tributes a part of the vector transformation while any single
one of the parties cannot recover the original vectors from
the final transformation result. Therefore, with blind vector
transformation, we could enable a party to match its interests
with another’s profile but, at the same time, to keep the
interests/profiles private. Further, to thwart runaway attack,
we introduce a lightweight verifier checking technique, which
enables the verifier to check the matching at the minimized
overhead and prevent any participant from launching the
runaway attack.

The contribution of this work could be summarized as
follows:

• For the first time, we separate the user’s interest from
his profile, which is expected to be a generalization of
traditional profile matching problem.

• We introduce a novel blind vector transformation tech-
nique, which could hide the correlation between the
original vector and the transformed result. Based on it, we
propose our PriMatch protocol, which enables one party
to match its interest with the profile of another, and vice
versa, without revealing their real profile and interest.

• We introduce a novel lightweight verifier checking ap-
proach to thwart runaway attack and thus achieve the
fairness of the two participants.

• We implement our protocol in real experiments. We
demonstrate the performance of the proposed scheme via
extensive experiment results.

The remaining of this paper is organized as follows: Section
II defines our system model which involves a novel private
match interaction and then presents the threats and our design
goals in this paper. We propose a fairness-aware secure friend
discovery protocol – PriMatch in Section III. Section IV
proves the security of PriMatch by probability analysis. We
show the efficiency of PriMatch by real implementation in
Section V and we conclude this paper in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARY

In this section, we first introduce our system model as well
as the adversary model, then we present our definition for
private fair friend discovery.

A. System Model

In mobile social networks, a user may launch a query
process to find potential friends. Each user initializes a profile
as his inherent characteristic. The profile consists of mul-
tiple attributes (e.g., user’s occupation, hobbies and other
private information) which could be denoted as a vector
P = {p1, p2, . . . , pn}. Here, pj(j = 1, . . . , n) refers to one
attribute of P and is an integer. When a user U issues a
query, he firstly generates the corresponding interest vector

I = {i1, i2, . . . , in}. Note that, similar to a typical search pro-
cess in online social networks, the user could freely generate
different interests before each query.

A typical friend discovery process could be described as
follows. A user A sends his current interest IA to user B,
and then he gets B’s current interest IB . After the interest
exchange, A compares his own profile PA with IB while
B compares his profile PB with IA. We define a successful
matching as PA matches IB and, at the same time, PB matches
IA, which is similar to the privacy level introduced in [5].

Note that, in some cases, the user may only care about
some specific attributes. To handle those attributes that are
not concerned in one query, we classify the attributes of I into
interested attributes (IA) and non-interested attributes (NIA).
Therefore, a successful matching should ensure the IA fields
of the interests and profiles match while NIA fields mismatch.
In this work, to make NIA fields not affect the comparison
result, we could simply assign an impossible value to the NIA
fields of the interest, which directly makes the comparison fail
no matter what the value of the profile is. For example, we
could fill the NIA fields with values out of the valid range.

We also assume the existence of third-party verifiers. These
verifiers are either honest, semi-honest or actively malicious.
The minority of them may collude with either user involved.

B. Adversary Model

we consider an adversary who is curious about others’
profile and interest. Therefore, without an appropriate security
countermeasure, the friend discovery process may suffer from
a series of privacy threats. In particular, we consider the
following adversary model

1) Interest/profile Leaking Attack: The adversary may try
to infer the interests or the profiles of other users during
the interest/profile matching process.

2) Runaway Attack (Protocol Abortion Attack): Under
this attack, even with a privacy preserving interest/profile
matching protocol, the adversary can obtain the personal
information of another user by aborting the protocol any-
time and perform certain analysis over the information
already obtained.

3) Collusion Attack: The adversary may collude with
other users to try to infer the user’s private information.

Therefore, we define the Private Fair Friend Discovery that
should satisfy the following objectives:

1) Privacy Guarantee: The protocol should well pro-
tect the personal information of the mobile users. In
particular, no one including the external and internal
attackers could get the profile/interest information of
the users. In the proposed protocol, after performing
the privacy-preserving file/interest matching protocol,
each participant could only obtain the comparison result
“success” or “fail”. No other information will be leaked
from the protocol.

2) Fairness Assurance: In each phase of the protocol,
a user can obtain personal information from others as

739

much as his own personal information leaking from
the protocol. In other words, no one can gain more
information than what he’s told others, which ensures
the fairness of the protocol.

C. Fast Variant of Paillier Homomorphic Encryption

The protocol proposed in this paper involves Paillier’s
homomorphic encryption. In the fast variant of Paillier cryp-
tosystem [13], given a message m and the public key
(n, g), the encryption function can be described as E(m) =
g(m+rn)(mod n2), where r is a random factor in the Pail-
lier cryptosystem. The decryption function is Dk(α) =
L(cαmod n2)
L(gαmod n2) , where L(x) = x−1

n and α ≤ n. It satisfies the
following homomorphic property:

E(m1)·E(m2) = g(m1+m2)+n(r1+r2)(mod n2) = E(m1+m2)

We denote the encryption of profile P = (p1, p2, . . . , pn)
under public key k as Ek[P] = (Ek(p1), Ek(p2), . . . , Ek(pn))
while Dk[P] is the decryption function, the same with interest
I . We assume that each user i has his own Paillier public and
private key (pki, ski), and the encryption and decryption in
this paper are all executed in Paillier cryptosystem.

III. PRIVATE FAIR MATCH PROTOCOL

A. Protocol Overview

The basic idea of blind vector matching is allowing two
untrusted parties to transform two vectors into blind ones
by following a series of private and identical steps, e.g.,
adding a random vector, shuffling in the same order. Since
the transformation follows the same step, the matching results
(e.g. the number of matches in the interest/profile) keep un-
changed before and after the transformation, which enables the
untrusted participants to compare the interest/profile without
leaking their real interest/profile information.

The major challenge of the blind vector is how to hide
the real value of the interest/profile of the participants. The
basic idea is that two untrusted participants contribute a part
of this transformation and each of them cannot recover the
real interest/profile. To enable that, we define five operation
primitives as follows:

execution function operation

Encrypt Encrypt(v⃗, pk)
Encrypt the vector v⃗ by Paillier
Encryption with public key pk as
Epk[v⃗]

VecAdd V ecAdd(v⃗, r⃗)

Add a random number vector r⃗ to
v⃗. If both vectors are encrypted un-
der Paillier Encryption, the adddi-
tion is performed as E[v⃗]E[r⃗] =
E[v⃗ + r⃗]

VecExt V ecExt(v⃗, r⃗)
Append some dummy vector r⃗ to
v⃗ to obtain v||r.

VecShuffle V ecShuffle(v⃗)
Randomly shuffle the elements in
vector v⃗

VecRev V ecRev(v⃗, k)
Randomly change the value of k
elements in vector v⃗

TABLE I
THE EXECUTION IN PRIMATCH

The overall procedure could be described as follows: the
user A encrypts his profile with his own public key by
triggering operation Encrypt(v⃗, pk). Here, Paillier is adopted
since it keeps A’s profile private and, at the same time, enables
B to perform blind transformation on it. The transformation
operations include V ecAdd, V ecExt, V ecShuffle, V ecRev,
which are summarized in Table I. To ensure the fairness of the
protocol, we require that each participant should compare the
blinded interest and profile. Each participant sends the number
of matching vector pairs as well as the size of search interest to
some verifiers. The verifiers compare if the number of search
interest equals the number of matching vector pairs. If both of
two sides match, the verifiers informs two sides of a successful
match. In this process, any participant learns nothing about the
personal information of the other except match or not. In the
follows, we present the detailed protocol.

B. The Detailed Protocols

1) System Initialization: U1 and U2 generates their Pail-
lier’s private key and public key pairs denoted as (sk1, pk1)
and (sk2, pk2).

Algorithm 1: The Blind Transformation Algorithm

Input: Ṗa ← Ua’s profile encrypted under his public key
pka, Ib ← Ub’s interest, eb ← the number of interest Ub

considers in Ib and lb ← a security parameter.
Output: P̈a ← the blind-transformed profile vector for Ua,
Ïb ← the transformed interest vector for Ub and sb ← the
actual matching result for Ub.

function BLIND-TRANSFORMATION(Ṗa, pka, Ib, eb, lb)
rb ← random vector of length n = ||Ṗa||
ṙb ← Encrypt(rb, pka)

P̃a ← V ecAdd(Ṗa, ṙb)
Ĩb ← V ecAdd(Ib, rb)
yb ← random vector of length lb
ẏb ← Encrypt(yb, pka)˜̇Pa ← V ecExt(P̃a, ẏb)
kb ← random number in [1, lb]
ỹb ← V ecRev(yb, kb)
İb ← V ecExt(Ĩb, ỹb)

Ïb ← V ecShuffle(İb)

P̈a ← V ecShuffle(˜̇Pa)

}
with the same order

sb ← eb + lb − kb
return P̈a, Ïb, sb

end function

2) The Blind Transformation Phase: We consider two users
U1 and U2 are performing a friend discovery process and their
profiles are denoted as P1 and P2. For this matching, U1 and
U2 may only consider e1 and e2 out of total n interest fields.
Thus, there are n− e1 and n− e2 attributes out of the match
scope for U1 and U2, respectively. We assume the current
interest vectors are I1 and I2.

740

In the blind transformation phase, each participant will
encrypt his profile by using his public key and provide it
to the other side for blind transformation. In the follows,
we introduce the blind transformation process by taking U2

transforming U1’s profile and his own interest as an example.
It is similar for U1 to blind transform U2’s profile. U1 performs
Encrypt(P1, pk1) to encrypt his profile P1, which is denoted
as Ṗ1. U1 sends Ṗ1 and pk1 to U2. Then, U2 performs the
following blind transformation operation:

• Blind Add: U2 generates a random vector r2, and then
performs ṙ2 = Encrypt(r2, pk1). After that, U2 calcu-
lates P̃1 = V ecAdd(Ṗ1, ṙ2) and Ĩ2 = V ecAdd(I2, r2)
by adding ṙ2 to Ṗ1 and r2 to I2, respectively.

• Blind Append: U2 generates a random vector y2 of
length l2, where l2 is a predetermined security param-
eter, and then performs ẏ2 = Encrypt(y2, pk1) to get˜̇P1 = V ecExt(P̃1, ẏ2).

• Blind Reverse: U2 randomly selects k2 ∈ {1, 2, · · · , l2}
and performs ỹ2 = V ecRev(y2, k2), then obtains İ2 =
V ecExt(Ĩ2, ỹ2).

• Blind Shuffle: U2 performs Ï2 = V ecShuffle(İ2) and
P̈1 = V ecShuffle(˜̇P1) with the same order.

After performing this process, U2 finishes the blind transfor-
mation of P1 and I2. In the same time, U2 also encrypts
his profile and U1 follows a similar strategy to make a blind
transformation towards P2 and I1.

Note that, among the above four operations, V ecAdd and
V ecShuffle are used to conceal the original value of P1

and prevent U1 from obtaining the transformation ways of
U2 by linking P1 and P̈1. U1 (or U2) can still obtain the
correct number of matched interest/profiles since P1 and I2 (or
P2 and I1) follow the same transformation pattern. However,
U1 or U2 can choose to launch runaway attack by obtaining
the matching number of his interest and another participant’s
profile without revealing his own profile. In the proposed
fair protocol, we further introduce V ecExt and V ecRev,
which are used to hide the actual matching numbers. In
particular, on U1 side, V ecExt introduces extra l2 matched
attributes to original matching result while V ecRev introduces
k2 mismatched ones. Therefore, the actual matching result is
updated to s2 = e2+l2−k2 for U2 and s1 = e1+l1−k1 for U1.
The blind transformation phase is summerised in Algorithm 1.

3) Fair Matching Phase: After decryption, U1 compares
P̂1 = Decrypt(P̈1, sk1) with Ï2 to get the number of matched
entries ŝ2, while U2 could get ŝ1 similarly. U1 sends h1 =
H(s1||ŝ2)(H is a crypto hash function) whereas U2 sends
h2 = H(ŝ1||s2) to some verifiers, who are selected randomly
by U1 and U2, to verify whether h1 = h2. If h1 = h2, the
match succeeds, otherwise, it fails.

4) Discussions: The proposed basic protocol cannot tol-
erate collusion attack. Suppose U1 and a verifier V collude,
when V receives U2’s comparing result h2 = H(ŝ1||s2), he
sends it to U1. Since ŝ1 ≤ (n + l1), s2 ≤ (n + l2) and n, l1
and l2 are all limited due to the efficiency of encryption and
decryption, U1 could get ŝ1 by brute force in worst-case time

complexity of O((n+ l1)(n+ l2)). If U1 could get ŝ1, based
on the information he obtains, he could find out how many
attribute matches are in P2 and I1. Then he could figure out
U2’s privacy by a probability that can’t be neglected.

C. Tolerate Collusion Attack via Blind Linear Transformation

In this section, we propose an advanced scheme Blind
Linear Transformation to tolerate the collusion attack(similar
technique has been used in [14]). The basic idea is that, instead
of directly sending h1 and h2 to the verifiers, an additional
blind linear transformation round is introduced to protect the
hash result. The scheme is shown as follows.

1) U1 concatenates s1 and ŝ2 to get a number sr1 = s1||ŝ2.
He then sends Epk1 [sr1] to U2.

2) U2 generates a pair of random numbers (a2, k2). He then
computes Epk1 [˙sr1] = Epk1 [a2sr1 + k2]. He also gets
sr2 = ŝ1||s2 and transforms sr2 in the same way to
obtain ˙sr2 = a2sr2 + k2.

3) U2 sends Epk2 [˙sr2] and Epk1 [˙sr1] back to U1.
4) As in 2), U1 selects a pair of random numbers (a1, k1)

and computes Epk2 [¨sr2] = Epk2 [a1 ˙sr2+k1]. Decrypting
with sk1, he obtains ˙sr1. He gets ¨sr1 = a1 ˙sr1+ k1 and
then sends Epk2 [¨sr2] back to U2.

5) U2 decrypts Epk2
[¨sr2]. U1 sends H(¨sr1) and U2 sends

H(¨sr2) to verifiers to test their equality.
In this way, each side hides a bijection f : x→ y from the

other, providing security assurance for sr1 and sr2.

IV. SECURITY ANALYSIS

In this section, we will demonstrate the fairness and the
privacy of PriMatch by the detailed security analysis.

A. Security Against Interest/Profile Leaking

Without loss of generality, we just consider P1 and I2.
Since the profile P1 is encrypted by Pallier cryptosystem, and
without the secret key sk1, no one except U1 could get P1.
Thus the privacy in P is preserved.

The privacy of I2 is guaranteed by PriMatch. After receiving
the processed P1 and I2, U1 can not correlate any item of I2
with the attributes in P1. At the same time, it is guaranteed for
U2 that U1 can not test his interest by changing P1 arbitrarily.

B. Security Against Runaway Attack

As we have introduced in Section III, after U1 decrypts the
processed P1, he could obtain the comparison result ŝ2 which
indicates how many pairs of items between processed P1 and
I2 match. If he knows m2 = l2 − k2 which indicates how
many pairs are the same in appended vector, he will know
that there are s2−m2 pairs of matched attributes between P1

and I2. Therefore, U1 could randomly select s2−m2 attributes
in his profile P1 as the corresponding attributes in I2. If this
probability could not be neglected, U1 may abort the protocol
and get some of U2’s interest with a high probability.

We will use the following theorem to discuss the upper
bound of the successful probability that U1 could guess any
item of I2 without any error.

741

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 20 30 40 50 60 70 80 90 100

T
im

e
(m

s
)

Number of Attributes(n)

l=n
l=2n
l=3n

(a) Blind Transformation

 0

 500

 1000

 1500

 2000

 2500

 20 30 40 50 60 70 80 90 100

T
im

e
(m

s
)

Number of Attributes(n)

l=n
l=2n
l=3n

(b) Fair Matching

 44.5

 44.6

 44.7

 44.8

 44.9

 45

 45.1

 45.2

 45.3

 45.4

 20 30 40 50 60 70 80 90 100

T
im

e
(m

s
)

Number of Attributes(n)

l=n
l=2n
l=3n

(c) Blind Linear Transformation

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 20 30 40 50 60 70 80 90 100

T
im

e
(m

s
)

Number of Attributes(n)

l=n
l=2n
l=3n

(d) Total time elapsed

Fig. 1. Run time in different phases of PriMatch

Theorem 1 Given a profile P and an interest I which
have been processed by PriMatch, the correct-guess proba-
bility P (CG) that U could infer any item of I based on
the processed P and the comparing result s is bounded by
3
ln (n ≥ 5), where n is the length of P and l is the number of
attributes appended to P .

Proof: The successful guess probability is expressed as:

P (CG) =

min(s,l)∑
m′=1

p(m = m′)Pr{CG|s,m} (1)

where p(m = m′) is the probability that U1 could guess
m correctly, and in our scheme, p(m = m′) = 1

l ,m
′ ∈

{1, 2, . . . , l}. Pr{CG|s,m} is the probability that given s
and m, U1 could guess s − m items correctly. Obviously,
when s − m ≥ n, P (CG|s,m) = 0, when s − m < n,
P (CG|s,m) = 1

(n
s−m)

. No matter s > l or s ≤ l, we get

P (CG) =
1

l

s−1∑
m=1

1(
n

s−m

) (2)

By mathematical induction, P (CG) ≤ 3
ln (n ≥ 5).

Theorem 1 indicates that given ϵ as the expected secure
probability such that P (CG) < ϵ, if ϵ is small enough, then
we think U1 will get nothing about U2’s interest since he could
not guess any part of I2 correctly, thus he has no incentive to
abort the protocol. Furthermore, we could safely bound it with
3
ln < ϵ. And according to this inequality, we can calculate l
and m to guarantee the fairness. Theorem 1 also indicates
that if two users are not matched finally, they can’t guess
anything according to the comparing result. Thus the fairness
is guaranteed by PriMatch.

C. Security Against Collusion Attack

In the revealing phase, the number of matches on both sides
will be transformed and neither side knows how the other side
performs such transformation. Obviously, the probability of
guessing (ai, bi), i ∈ (1, 2) of the other side is negligible. We
have the following theorem.

Theorem 2 Given the knowledge of sr1 and ˙sr1 in ˙sr1 =
a2sr1 + k2, the probability that U1 guesses (a2, k2) correctly
(sr1, ˙sr1 ∈ Z∗

p) is bounded by 1/p.
Proof: The attempt to guess the parameters can be for-

malized as guessing (a, b) in y = ax+ b given the knowledge
of only one pair of (x0, y0). This problem is at least as hard

as guessing y1 in y = ax+b with (x0, y0) and x1, since if the
previous problem can be solved, the adversary can use (x0, y0)
to guess (a, b) and then calculate y1 = ax1 + b. The security
of the latter problem is proved in [14] and the probability of
guessing y1 correctly is 1/p. Thus, the probability of guessing
(a2, k2) correctly is at most 1/p.

Theorem 2 shows the security of our scheme against collu-
sion attack. A user is unable to search over [1, n+ l] to obtain
s and ŝ without knowing f : x → y. Even if he obtains ṡr
correctly(by brute force trial and error with the hash value),
he can only get sr = (ṡr − b)/a with negligible probability.

The Fairness Assurance in revelation is achieved in that
users can choose to trust the majority of the verifiers and the
only results revealed so far are “success” or “fail”, which is
known to both sides at the same time.

The verifiers only receive two hash values and should only
answer whether they are equal. The only information available
to them is the two hash values and the only answer they can
get is whether they are equal, which is just as intended. No
further information can be derived from the hash value due
to one-way characteristic. Thus, the revealing phase reveals
information no more than “success” or “fail”.

V. EVALUATION

We implement our protocol in Java and evaluate it on a
laptop with Intel Core i3-330m(2.1GHz) and 2GB RAM. The
Paillier encryption library is based upon [15]. We modify it to
implement the fast variant of Paillier scheme as proposed in
[13]. We evaluate the running time of our protocol in Blind
Transformation, Fair Matching and Blind Linear Transforma-
tion phase. In Blind Shuffle phase, we use Knuth Shuffle[16]
in order to guarantee the randomness in permutation.

The Paillier key length is selected as 1024-bit. The α is 160-
bit as in [13]. We tested a single round in our simulation in
which U1 launches the protocol and matches his profile against
U2’s interest. As in a real world application such protocol will
be executed in parallel by two users, a single round is enough
to measure its efficiency. The results are depicted in Figure 1.
We choose 3 security parameter length l = n, l = 2n, l = 3n.
The number of attributes ranges from 20 to 100. We measure
the running time against the number of attributes under those
3 parameter settings. We’ve plotted the average value of 20
runs. Detailed statistics about the results is shown in Table II

742

n l
Blind Transformation(ms) Fair Matching(ms) Blind Linear Transformation(ms) Total(ms)
Min Max Std Min Max Std Min Max Std Min Max Std

20 20 753 784 12.3333 240 257 41.4620 44 47 0.7263 1038 1088 16.9773
20 40 1129 1177 17.3433 361 382 5.9521 44 46 0.7263 1536 1603 23.1471
20 60 1505 1567 24.9469 480 514 10.0668 44 48 1.1790 2034 2127 34.7969
60 60 2257 2352 31.3503 717 767 11.6645 44 47 0.7681 3018 3162 42.5677
60 120 3389 3550 63.3628 1079 1159 23.8778 44 47 1.1169 4515 4756 86.4866
60 180 4516 4729 72.3795 1446 1527 24.3234 44 47 0.9000 6009 6294 94.7878

100 100 3765 3918 52.0802 1204 1273 16.0409 44 46 0.7348 5016 5234 65.2713
100 200 5647 5914 101.2305 1786 1930 40.1426 44 47 0.8646 7477 7882 139.7714
100 300 7526 7841 125.4932 2395 2588 53.3105 44 46 0.7399 9965 10464 175.8158

TABLE II
EXPERIMENT RESULTS OF THE PROPOSED SCHEME

As is shown from Fig. 1-(a)(b)(d), the growth of the execu-
tion time remains linear in all cases. This makes sense since
the complexity of each encryption or decryption is only deter-
mined by the fixed key size. Thus the decryption or encryption
time grows in proportion to the number of attributes. Fig. 1-(a)
also indicates that most of the computation time is spent in
Blind Transformation phase. This is true as the encryption is
the most expensive part in our implementation. Pre-encrypting
the attributes in the profile off-line could further improve the
performance.

As Fig. 1-(c) shows, the Blind Linear Transformation phase
in the protocol introduces low overhead, within 48ms in the
transformation step. Thus, compared with the basic scheme,
the advanced scheme is secure while incurs little overhead.

Using different security parameter l will give different
performance since l increases the total vector size and the
number of encryption/decryption operations. We present these
3 parameter settings to demonstrate a trade-off between secu-
rity and efficiency. However, given the fact that even if the
adversary has guessed one attribute correctly, he has no way
to verify it and thus, setting l = n is enough in most cases
since in comparison with the number of attributes(normally
20 to 30 as in [5][4]), the 3

ln = 3
n2 (l = n) is far less than a

random guess with probability 1
n . Thus it’s secure enough in

most cases. The efficiency of our scheme is better than some
existing protocols such as the secure friend discovery in [4].
With l = n, our implementation out-performs [4] with 40%
less running time (1.556s compared to 2.6s in [4]), despite the
fact that [4] runs on Intel Core Duo P8600(2.4GHz), whose
clock speed is faster than our i3-330m, and the simulation is
a single thread task with no speed up provided by the Hyper-
Threading technology in Core i3-330m.

Note that the computation overhead on verifiers is not
measured in the simulation. But it’s clear that the only task
for the verifiers is to test whether two integers(no larger than
256 bit when using SHA-256) are equal. The transportation
overhead and power consumption for them is negligible.

VI. CONCLUSION

In this work, we have developed a novel protocol that
ensures the fairness and the privacy of privacy-preserving in-
terest/profile matching process in mobile social networks. The
experiment result substantiates the efficiency of our scheme,

thus coped with the security analysis, we can conclude our
work as secure and efficient. Our future work includes pro-
viding fine-grained interest/profile matching and investigating
more issus on security and privacy in mobile social networks.

ACKNOWLEDGEMENT
This research is supported by National Natural Sci-

ence Foundation of China (Grant No.61003218, 70971086,
61161140320, 61033014), Doctoral Fund of Ministry of Edu-
cation of China (Grant No.20100073120065).

REFERENCES

[1] “foursquare,” 2012. [Online]. Available: https://foursquare.com/
[2] “gowalla,” 2012. [Online]. Available: http://gowalla.com/
[3] Z. Yang, B. Zhang, J. Dai, A. C. Champion, D. Xuan, and D. Li, “E-

SmallTalker: A Distributed Mobile System for Social Networking in
Physical Proximity,” in 2010 International Conference on Distributed
Computing Systems, Jun. 2010, pp. 468–477.

[4] W. Dong, V. Dave, L. Qiu, and Y. Zhang, “Secure friend discovery
in mobile social networks,” in Proceedings of IEEE INFOCOM 2011.
IEEE, Apr. 2011, pp. 1647–1655.

[5] M. Li, N. Cao, S. Yu, and W. Lou, “FindU: Privacy-preserving personal
profile matching in mobile social networks,” in Proceedings of IEEE
INFOCOM 2011. IEEE, Apr. 2011, pp. 2435–2443.

[6] R. Lu, X. Lin, X. Liang, and X. Shen, “A secure handshake scheme with
symptoms-matching for mhealthcare social network,” Mobile Networks
and Applications, pp. 1–12, 2010.

[7] M. Von Arb, M. Bader, M. Kuhn, and R. Wattenhofer, “Veneta:
Serverless friend-of-friend detection in mobile social networking,” in
Networking and Communications, 2008. WIMOB’08. IEEE International
Conference on Wireless and Mobile Computing,. Ieee, 2008, pp. 184–
189.

[8] L. Kissner and D. Song, “Privacy-preserving set operations,” in Advances
in Cryptology–CRYPTO 2005. Springer, 2005, pp. 241–257.

[9] Q. Ye, H. Wang, and J. Pieprzyk, “Distributed private matching and set
operations,” Information Security Practice and Experience, pp. 347–360,
2008.

[10] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in Advances in Cryptology-EUROCRYPT 2004.
Springer, 2004, pp. 1–19.

[11] E. D. Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear computational and bandwidth complexity,” 2010.

[12] “perfectmatch,” 2012. [Online]. Available: http://www.perfectmatch.com
[13] P. Paillier, “Public-key cryptosystems based on composite degree resid-

uosity classes,” in Advances in Cryptology–EUROCRYPT’99. Springer,
1999, pp. 223–238.

[14] R. Rivest, “Unconditionally secure commitment and oblivious transfer
schemes using private channels and a trusted initializer,” Unpublished
manuscript, 1999.

[15] “Paillier homomorphic cryptosystem (java implementation),” 2012.
[Online]. Available: http://www.csee.umbc.edu/∼kunliu1/research/
Paillier.html

[16] D. E. Knuth, The Art of Computer Programming volume 2:Seminumer-
ical algorithms. Addison Wesley, 1969.

743

