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Abstract—Malicious and selfish behaviors represent a serious
threat against routing in Delay or Disruption Tolerant Networks
(DTNs). Due to the unique network characteristics, designing
a misbehavior detection scheme in DTN represents a great
challenge. In this paper, we propose PMDS, a probabilistic
misbehavior detection scheme, for secure DTN routing. The basic
idea of PMDS is introducing a periodically available Trusted
Authority (TA), which judges the node’s behavior based on the
collected routing evidences. We model PMDS as the Inspection
Game and use game theoretical analysis to demonstrate that,
by setting an appropriate investigation probability, TA could
ensure the security of DTN routing at a reduced cost. To further
improve the efficiency of the proposed scheme, we correlate
detection probability with a node’s reputation, which allows a
dynamic detection probability determined by a node’s reputation.
The extensive analysis and simulation results show that the
proposed scheme substantiates the effectiveness and efficiency
of the proposed scheme.

Keywords — DTN, Security, Punishment and Compensation,
Inspection Probability

I. INTRODUCTION

Most current networking protocols have been designed
with the assumption that an end-to-end path between the
packet source and the destination is almost always available.
If connectivity is interrupted, then routing protocols would
provide an alternative path after at most a transient outage.
This is also assumed for emerging wireless Mobile Ad-hoc
NETworks (MANETS). However, there is an entire class of
wireless networks for which this assumption does not hold.
For wireless networks with intermittent connectivity, also
called Delay or Disruption Tolerant Networks (DTNs), lack
of continuous connectivity, network partitioning and very long
delays are actually the norm, not the exception. Such networks
have recently received an increasing interest due to their great
potential for supporting applications deployed in challenged
environments, such as vehicular networks [1], wireless social
networks [2], pocket switched networks [3] and etc.

The recent studies show that the Byzantine (insider) adver-
sary may pose a serious threat against DTN to compromise
the network performance [4]. A Byzantine adversary (i.e., a
physically captured and controlled legitimate node) can do
serious damage to the network in terms of data availability,
latency, and throughput. The typical examples of Byzantine
attack include dropping, modifying the legitimate packets and
injecting fake packets. Further, even for the non-malicious

nodes, the rational (selfish) nodes may also try to maximize
their own benefits by enjoying the services provided by the
DTN network and, at the same time, refusing to relay the
bundles for others [5].

Recently, there are quite a few proposals for reputation
based or credit based incentive schemes in DTN [4]-[7].
However, it is observed that most of existing literatures are
based on forwarding history verification, (e.g. multi-layered
credit [5], [6], three-hop feedback mechanism [4], or encounter
ticket [7]), which are costly in terms of transmission over-
head and verification cost. The security overhead incurred
by forwarding history checking is critical for a DTN since
expensive security operations will be translated into more en-
ergy consumptions, which represents a fundamental challenge
in resource-constrained DTN. Further, even from the Trusted
Authority (TA) point of view, misbehavior detection in DTNs
will inevitably incur a high security overhead, which may
include the cost of collecting the forwarding history evidence
via deployed judgenodes [4] and transmission cost to TA.
Therefore, an efficient and adaptive misbehavior detection and
reputation management scheme is highly desirable in DTN.

In this paper, we propose PMDS, a Probabilistic Mis-
behavior Detection Scheme for DTN, to adaptively detect
misbehaviors in DTN and achieve the tradeoff between the
detection cost and the detection performance. PMDS is moti-
vated from the Inspection Game [8], which is a game theory
model in which an inspector verifies if an another party, called
inspectee, adheres to certain legal rules. In this model, the
inspectee has a potential interest in violating the rules while
the inspector may have to perform the partial verification due
to the limited verification resources. Therefore, the inspector
could take advantage of partial verification and corresponding
punishment to discourage the misbehaviors of inspectees.
Furthermore, the inspector could check the inspectee with a
higher probability than the Nash Equilibrium points to prevent
the offences, as the inspectee must choose to comply the rules
due to its rationality.

Inspired by Inspection Game, to achieve tradeoff between
the security and detection cost, PMDS introduces a periodi-
cally available Trust Authority (TA), which could launch the
probabilistic detection for the target node and judge it by
collecting the forwarding history evidence from its upstream
and downstream nodes. Then thus TA could punish or com-
pensate the node based on its behaviors. To further improve the



performance of the proposed probabilistic inspection scheme,
we introduced a reputation system, in which the inspection
probability could vary along with the target node’s reputation.
Under the reputation system, a node with a good reputation
will be checked with a lower probability while a bad reputation
node could be checked with a higher probability. We model
PMDS as the Inspection Game and use game theoretical
analysis to demonstrate that TA could ensure the security of
DTN routing at a reduced cost via choosing an appropriate
investigation probability.

The remainder of this paper is organized as follows. In
Section II, we present the system model, adversary model
considered throughout the paper. In Section III we proposed
the basic PMDS and the analyze from the perspective of
game theory. The simulation of PMDS is given in Section
IV, followed by the conclusion in Section V.

II. PRELIMINARY
A. System Model

In this paper, we adopt the system model similar to [5]. We
consider a normal DTN consisted of mobile devices owned by
individual users. Each node 7 is assumed to have a unique ID
N; and a corresponding public/private key pair. We assume
that each node must pay a deposit C' before it joins the
network, and the deposit will be paid back after the node
leaves if there is no offend activity of the node. Similar to
[10], we assume that a periodically available TA exists so
that it could take the responsibility of misbehavior detection
in DTN. For a specific detection target N;, TA will request
N;’s forwarding history in the global network. Therefore, each
node will submit its collected IV;’s forwarding history to TA
via two possible approaches. In a pure peer-to-peer DTN,
the forwarding history could be sent to some special network
components (e.g., roadside unit (RSU) in vehicular DTNs or
judgenodes in [4]) via DTN transmission. In some hybrid DTN
network environment, the transmission between TA and each
node could be also performed in a direct transmission manner
(e.g., WIMAX or cellular networks [11]). We argue that
since the misbehavior detection is performed periodically, the
message transmission could be performed in a batch model,
which could further reduce the transmission overhead.

B. Routing Model

We adopt the single-copy routing mechanism such as First
Contact routing protocol, and we assume the communication
range of a mobile node is finite. Thus a data sender out of
destination node’s communication range can only transmit
packetized data via a sequence of intermediate nodes in a
multihop manner. Our misbehaving detection scheme can be
directly used but not limited in metric-based routing algo-
rithms, such as MaxProp [12] and ProPHET [13].

C. Threat Model

First of all, we assume that each node in the networks is
rational and a rational node’s goal is to maximize its own
profit. In this work, we mainly consider two kinds of DTN

nodes: selfish nodes and malicious nodes. Due to the selfish
nature and energy consuming, selfish nodes are not willing
to forward bundles for others without sufficient rewarding.
As an adversary, the malicious nodes arbitrarily drop others
bundles (blackhole or greyhole attack), which often take place
beyond others observation, leading to serious performance
degradation. Note that any of the selfish actions above can
be further complicated by the collusion of two or more nodes.

D. Design Requirements

The design requirements include

e Distributed:We require that a network authority responsi-
ble for the administration of the network is only periodi-
cally available and consequently incapable of monitoring
the operational minutiae of the network.

¢ Robust: We require a misbehavior detection scheme that
could tolerate various forwarding failures caused by var-
ious network environments.

e Scalability: We require a scheme that works irrespective
of the size and density of the network.
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Fig. 1. In the Routing Evidence Generation Phase, A forwards packets to B
,then gets the delegation history back. B holds the packet and then encounters
C. C gets the contact history about B. In the Auditing Phase, when TA decides
to check B, TA will broadcast a message to ask other nodes to submit all the
evidence about B, then A submits the delegation history from B, B submits
the forwarding history (delegation history from C), C submits the contact
history about B.

III. A PROPOSED BASic PMDS FOR DTN

In this section,we initially analyze the PMDS as a basic
scheme, then we will explore the PMDS with a global repu-
tation system.

A. Generation and Auditing of the Routing Misbehavior De-
tection Metrics

In the proposed misbehavior detection scheme, we further
separate the whole misbehavior detection process into the
Routing Evidence Generation Phase and Auditing phase.



1) Routing Evidence Generation Phase: For the simplicity
of presentation, we take a three step data forwarding process as
an example. Suppose that node A has packets to be delivered
to node C. Now, if node A meets an another node B that could
help to forward the packets to C, A will replicate and forward
the packets to B. Thereafter, B will forward the packets to
C when C arrives at the transmission range of B. In this
process, we define three kinds of data forwarding evidences
which could be used to judge if a node is a misbehavior or
not:

e Delegation Evidence D: After node A delegates the
packet transmission task to B, B will generate a dele-
gation evidence back to A, the evidence includes D =
{M, A, B, Dst, TS, Exp, Sigg} , where M is the mes-
sage, T'S and Exp refer to the time stamp and the
packets expiration date of the packets, respectively, Dst
is the packets destination, Sigp refers to the signature
generated by B. So Dp is the set of routing tasks of B,
which will be stored at node A.

e Forwarding History Evidence F: If node B success-
fully forward the packets to node C, C will gener-
ate a forwarding history evidence to demonstrate that
B has successfully finished a forwarding task. F =
{M, B,C, Dst, TS, Exp, Sigc}, where Sigc refers to
the signature generated by node C to demonstrate the
authenticity of this evidence. F is stored at node B.

o Contact History Evidence £: Whenever B meets a new
node E, a new contact history [14] evidence will be
generated to demonstrate the contact of B and E as
{B,E,TS, Sigg, Sigr}, where Sigp refers to the signa-
ture generated by both of node B and E to demonstrate the
authenticity of this evidence. Note that £ will be stored
at both of node B and E.

As shown in Fig.1, whenever node A forwards the packets to
B, Delegation Evidence D is generated by B and sent to A.
When B meets C, they will jointly generate the Contact History
Evidence £ and then a Forwarding History Evidence F will be
generated by C towards B during the data transmission phase.

2) Auditing Phase: In the Auditing phase, TA will launch
an investigation request towards node B in the global net-
work. Then, each node will submit its collected Delegation
Evidences and contact history evidences to TA. Node B will
also submit its forwarding history evidences to TA. Note that
Delegation Evidence represents the forwarding tasks, Contact
History Evidence records the network environment constraints,
and Forwarding History Evidence demonstrates the real data
forwarding performed by node B. If B is an honest node, he
will try his best to finish the forwarding tasks. So if we don’t
consider network constraints, F should fully match Delegation
Task D. However, in reality, node B may fail to finish all of
the tasks due to the network constraints (e.g., lack of enough
contacts). Therefore, to judge if a node is a misbehavior or not,
we should take all of the three factors above into consideration.

Therefore, in the proposed scheme, TA judges if node B is
a misbehavior or not by triggering the Algorithm 1. In this
algorithm, we introduce Find, which takes D, £ as well as a

Algorithm 1: Judge(node 7)
1: demand all the nodes (including node ¢) to provide
evidence D, £, F about node i
2: W=Find(Delegation Evidence D, Contact History
Evidence &, Routing Protocol R)
if 7 ==V then
return 1
else
return 0
end if

N kR

specific routing protocol R as the input, and output the ideal
forwarding candidates YV. Algorithm 1 will compare W and
F. If they match, B is a good node. Otherwise, it is malicious.

However, we notice that it may introduce a heavy load
on TA to collect and audit various routing evidences. In the
following, inspired by the inspection game, we will propose a
basic probabilistic misbehavior detection scheme to reduce the
detection overhead without compromising the system security.

B. The Basic Probabilistic Misbehavior Detection Scheme

Different from periodical detection, the proposed PMDS
allows the TA to launch the misbehavior detection at a certain
probability. Algorithm 2 shows the details of the proposed
probabilistic misbehavior detection scheme. For a particular
node ¢, TA will launch an investigation at the probability of py.
If ¢ could pass the investigation by providing the corresponding
evidences, TA will pay node 7 a compensation w; otherwise,
1 will receive a punishment C' (lose its deposit).

Algorithm 2: Basic PMDS
1: initialize the number of nodes n
2: for i <— 1 ton do
3:  generate a random number m,; from 1 to 10" — 1

4:  if m;/10™ < p, then

5: ask all the nodes (including node ¢) to provide
evidence about node ¢

6 if Judge(node i)==1 then

7: pay node 7 the compensation w

8 else

9: give a punishment C' to node i

10: end if

11:  else

12: pay node 7 the compensation w

13:  end if

14: end for

In the follows, we will model the above described algorithm
as an Inspection Game. And we will demonstrate that, by
setting an appropriate detection probability threshold, we could
achieve a lower detection overhead and still stimulate the
nodes to forward the packets for other nodes.



TABLE I
THE PAYOFF MATRIX OF TA AND AN INDIVIDUAL NODE

TA
I (py) Nd—ps)
an individual O (py) -C, C-h W, -w
node F({—py) | w-g v-w-h w-g, v-w

C. Game Theory Analysis

Before presenting the detailed Inspection Game, we assume
that the forwarding transmission costs each node g to forward
a packet and, thus, each node will receive a compensation w
from TA, if successfully passing TA’s investigation; otherwise,
it will receive a punishment C' from TA. The compensation
could be the virtual currency or credits issued by TA; on the
other hand, the punishment could be the deposit previously
given by users to TA. TA will also benefit from each successful
data forwarding by gaining v, which could be charged from
source node similar to [5]. In the auditing phase, TA checks
each node with the same probability p,. Since checking will
incur a transmission cost h, TA has two strategies, inspecting
(D or not inspecting (N). Each node also has two strategies,
forwarding (F) and offending (O). Therefore, we could have
the Probabilistic Inspection Game as follows:

Definition According to PMDS, the Probabilistic Inspection
Game is

G =< N,{s;},{m:},{pi} >

o N ={ag,a1,...,an} is the set of the players, ay donates
TA and a; donates node 1.

o 8; = {Si0,Si1, 82, .-, Sikc } is the strategy set of the
player i, s = {I,N}, s, = {F,O}.

o ; is the payoff of the ith player a;, and it is measured
by credit earnings.

o p; is a mixed strategy for player i, and the probability
distribution p; = {pio,Di1,..-,Dik} corresponds to the
strategy set s; of the player i, where 0 < p;, < 1 for
k=0,..,K and pjo + - - - + pix = 1. Specifically, py =
{Po;1 —po}, i = {ps,1 — s}, po donates inspection
probability and py donates forwarding probability.

Then we could get the payoff matrix shown in Table I,
and we could use Theorem 1 to demonstrate that TA could
maintain the network security with a low inspection cost by
PMDS.

Theorem 1: If TA inspects at the probability of p, = gié
in our Basic PMDS, a rational node must choose forwarding
strategy, and the TA will get a higher profit than it checks all
the nodes in the same round.

Proof: This is a static game of complete information,
though no dominating strategy exists in this game, there is
a mixed Nash Equilibrium point according to the Table I as

_ (9 h
(pbva) - (w+cv ’LU—|—C)
If the node chooses offending strategy, its payoff is
g+e g+e
w S fr— —C . . pry — —
i) =0+ (5 ) rur g mu-a—

If the node chooses forwarding strategy, its payoff is
(W) =pp-(w—=g)+ (1 =pp)-(w=g)=w—-yg

The latter one is obviously larger than the previous one.
Therefore, if TA chooses the checking probability USJ’IEC a
rational node must choose the forwarding strategy.

Furthermore, if TA announces it will inspect at the proba-
bility p, = ug)fc to every node, then its profit will be higher
than it checks all the nodes, for

gte
w+ C

the latter part in the inequality means TA checks all the nodes.
|

Since the probability that a malicious node cannot be
detected after k rounds is (1 — %)k — 0,k — oo. Thus it
is almost impossible that a malicious node cannot be detected
after a certain number of rounds. In the simulation section,
we will show that the detected rate of malicious users is
close to 100% with a proper detection rate, at the same time,
the transmission cost is much lower than inspection without

PMDS.

v—w—( )-h>v—w—nh (1)

D. Inspection Based on Reputation

The previous analysis has shown that the basic PMDS is
enough to assure the security. However, the basic scheme
assumes the same detection probability for each node, which
may not be desirable in practice. It is observed that a good
node could be detected less frequently while a bad node should
be inspected at a higher probability. Therefore, we could
combine PMDS with a reputation system which correlates the
detection probability with nodes’ reputation.

The reputation system of PMDS could update node’s repu-
tation r based on the last detection result, then the reputation
could be used to determine the inspection probability p of
the node. The inspection probability p should be the inverse
function of reputation r. Note that, p must not be higher than
the bound f_ & to assure the network security, which we have
analyzed above. And based on the property of probability, it
is obvious that p can not be larger than 1, which is the upper
bound of detection probability. If the detection probability p
for a particular node is 1, it means the node should always be
detected, then it must be a malicious node.

With the help of the reputation system, PMDS will be
enhanced and the detection efficiency will be improved. Fur-
thermore, the reputation system could tolerate the transmission
errors of a node with a reputation r = 1. What’s important, a
node with a lower reputation will lead to a higher inspection
probability as well as a decrease of its expected payoff 7.
Due to the limitation of pages, the details of reputation system
are discussed in our full paper.

IV. SIMULATION OF PMDS

We set up the experiment environment with the Oppor-
tunistic Networking Environment (The ONE) simulator [15],
which is designed for evaluating DTN routing and application



Fig. 2.
100%

Experiment results with user number of 100, 80, 50

50%

2000

[ without PMDS
1800

80%

I
o
X

-s- PMDS with 100 users
=©-PMDS with 80 users
- *-PMDS with 50 users

[ PMDS with p=50%
[ PVDS with p=20%
[C1PMDS with p=10%

60% 30%

40% 20%]

‘® PMDS with 100 users

20% * =6-PMDS with 80 users | |
B - * - PMDS with 50 users

Misidentified Rate of Normal Users

Detected Rate of Malicious Users

10% T

- AP T T Al

20% 30% 40%

Detection Probability p

0 10% 50% 0 20%

(a) Detected rate of malicious nodes

protocols. In our experiment, we adopt the First Contact rout-
ing protocol, which is a single-copy routing mechanism, and
we use our campus (Shanghai Jiao Tong University Minhang
Campus) map as the experiment environment.

We use the Packet Loss Rate (PLR) to describe the mis-
behavior level of a malicious node. In DTN, when a node’s
buffer is depleted, a new received bundle will be dropped by
the node, and PLR denotes the rate between dropped bundles
and received bundles. But a malicious node will pretend no
more buffer for others and drop all the bundles it received.
Thus PLR actually denotes a node’s misbehavior level, e.g. if
a node’s PLR is 1, it is totally a malicious node; if a node’s
PLR is 0, we take it as a normal node. In our experiment, we
set PLR=1. On the other hand, since a normal node may also
be identified as malicious due to the depletion of its buffer,
so we need to measure the false rate of such misidentified
nodes to prove that PMDS has little impact on the normal
users who adhere to the security and routing protocols. Finally,
as we claimed, PMDS will incur a much lower transmission
overhead than the system without PMDS, so we will evaluate
and compare the transmission times of the system with and
without PMDS.

We use Malicious Node Rate (MNR) to denote the propor-
tion of the malicious nodes among all the nodes, and MNR
is 10% in our experiment. We set the time interval ¢ to be
about 3 hours (10800s), and we run experiments with different
numbers of nodes, such as 50, 80, 100, where the number
of malicious nodes is 5, 8, 10 respectively. The detection
probability p varies from 0 to 50%, and we run each case
for 10 times. Then we compare the average results with and
without PMDS, the experiment results are showed in Fig. 2.

Fig. 2(a) shows that when detection probability p is larger
than 40%, PMDS could almost detect all the malicious nodes,
where the detected rate of malicious nodes is close to 100%.
It implies that PMDS could assure the security of the DTN in
our simulation. Furthermore the misidentified rate of normal
users is lower than 10% when user number is large enough, as
showed in Fig. 2(b), which means that PMDS will not impact
the activities of DTN users a lot. In fact, Fig. 2(c) indicates
that PMDS will reduce much transmission overhead compared
to the DTN without PMDS, that means PMDS will improve
the detection performance of TA and save the transmission

Detection Probability p

(b) false rate of misidentified nodes

30% 40% 50% 100 8o 50

User number

(c) Transmission overhead incurred by PMDS

cost of the whole system.

V. CONCLUSION

In this paper, we propose a Probabilistic Misbehavior De-
tection Scheme (PMDS), which could reduce the detection
overhead effectively. We model it as the Inspection Game and
show that an appropriate probability setting could assure the
security of the DTNs at a reduced detection overhead. Our
simulation results confirm that PMDS will reduce transmission
overhead incurred by misbehavior detection and detect the
malicious nodes effectively. Our future work will focus on
the extension of PMDS to other kinds of networks.
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