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Threshold digital signature and blind signature are playing important roles in

cryptography as well as in practical applications such as e-cash and e-voting systems. Over the

past few years, many cryptographic researchers have made considerable headway in this field.

However, to our knowledge, most of existing threshold blind signature schemes are based on

the discrete logarithm problem. In this paper, we propose a new robust threshold partial blind

signature scheme based on improved RSA cryptosystem. This scheme is the first threshold partial

blind signature scheme based on factoring, and the robustness of threshold partial blind signature is

also introduced. Moreover, in practical application, the proposed scheme will be especially suitable

for blind signature-based voting systems with multiple administrators and secure electronic cash

systems to prevent their abuse.

Keywords: threshold signature, blind signature, improved RSA cryptosystem, factoring

problem, electronic cash.

1 Introduction

The concept of the blind signature scheme was first introduced by Chaum[1]. Gener-
ally speaking, there are two entities in a blind signature scheme, namely the requester
and the signer. The requester requests the signer to make a signature on a blind data
and derives the signed message from the signed blind data. Then, after the requester
finally opens the message and its signature, the signer can verify this signature but
unable to link this signed message to the previous signing process instance. Because of
its anonymity, the blind signature has been widely used to realize a lot of cryptographic
protocols such as secure voting protocol and electronic payment systems[2,3].

Due to the characteristics of electronics, e-cash can be easily duplicated. Hence, to
prevent a customer from double-spending his e-cash, the bank has to keep a database
which stores all spent e-cash to check whether a specified e-cash has been spent by
searching this database. Obviously, without special measures, the database kept by the
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bank may grow unlimitedly. This special measure is referred to as the partial blind
signature

The notion of partial blind signature was introduced by Abe and Fujisaki[4] in 1996
and formalized by Abe and Okamoto[5] in 2000. The most preponderant advantage of
a partial blind signature is that signer can ensure that each signature can contain some
common information, which cannot be removed or changed. Because of its excellent
characteristics, the technique of partial blind signature makes it possible to prevent
the bank’s database from growing unlimitedly since the bank (or signer, respectively)
can insert expiration date into each e-cash (or signature). Any expired e-cash can be
removed from the database periodically.

On the other hand, the voting system or electronic payment system based on blind
signature scheme are usually managed by a single administrator, who is always em-
powered to authorize votes or sign the message. But, a dishonest administrator can
abuse this power to cast fraudulent votes for his own sake. To prevent this abuse by a
single administrator, we need more than one administrators using threshold signature
scheme[6−10] to sign a message. For this request, the threshold blind signature scheme
was introduced by Juang and Lei[11]. In their scheme, the power of a single adminis-
trator can be distributed to n administrators and any t(t < n) out of n administrators
can generate a signature for a given message, but any t − 1 or less cannot generate a
valid signature.

After Juang and Lei[11] initially proposed (t, n) threshold blind signature scheme,
Juang, Lei and Yu[12] also presented a provably secure threshold blind signature scheme
based on Okamoto-Schnorr blind signature technique[13,14]. And Kim et al.[15] also
put forth an efficient and provably secure threshold blind signature scheme, which
was claimed more efficient and more secure compared with the former schemes[11,12].
More recently, Vo et al.[16] proposed a new threshold blind signature from bilinear
parings. However, the existing threshold bind signature schemes[15−17] most are based
on the discrete logarithm problems. Therefore, people hope to design threshold blind
signature schemes based on other problems, such as factoring problem.

In this paper, we propose a new threshold partial blind signature scheme based on
improved RSA cryptosystem[18]. Since the improved RSA cryptosystem[18] is equivalent
to factoring problem, the security of our proposed scheme also is relative to the factoring
problem.

In addition, in ref. [19], the first author firstly introduced the definition of robust
threshold key escrow scheme (RTKES). In an RTKES, malice escrow agency fail to
obtain the system secret key or user’s secret key, even if the number of malice escrow
agency is more than or equal to the value of threshold. Therefore, to meet some special
requirements, the notion of robust threshold also can be clearly applied to the threshold
blind signature schemes. Hence, the proposed threshold partial blind signature scheme
here will also have the property of robustness.

1.1 Our contributions

This paper gives the definition of robust threshold signature and presents a new
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robust partial threshold blind signature scheme based on the factoring problem.

Here the property of robustness in a (t, n) threshold signature means that even if
t signers (t is assumed to be the threshold value) ally, they still have no chance to
arbitrarily sign on a message, because they only recover the equivalent “key” of the
original key and cannot extract the original key from the equivalent “key”, which is
particularly important in many occasions, especially when the original key has other
purposes in the whole system.

To achieve this goal, we add a trusted dealer, assumed to be always trustable, to
our system. In addition, we need a key management center (KMC) to publicize the
system parameters and distribute the sub secret key and a dealer assigned to resend
the intermediate information and sign with his secret key in the scheme. Obviously,
with the trusted dealer, the system will enjoy more convenience and more security. For
example, in a threshold signature scheme, it is obviously inconvenient for a user to
send a message to k signers for signature. Thus, a computer can be used as the trusted
dealer to deal with the signing process. In addition, due to his secret key, the dealer
will make the scheme more robust.

Naturally, the idea of the robust threshold can also be applied to other discrete-log
based threshold signature systems.

1.2 Organization

The rest of the paper is organized as follows: In section 2, we will review the related
building technologies, such as improved RSA system, blind improved RSA signature
and partial blind improved RSA signature. Then we propose our scheme in section 3.
In section 4, we will give the security analysis of the new scheme. Finally, concluding
remarks are made in section 5.

2 Preliminaries

2.1 Improved RSA cryptosystem

The improved RSA cryptosystem was introduced in ref. [18]. For convenience, we
briefly recall the scheme as follows:

Randomly choose two secure large primes p, q satisfying p = 2p′ + 1 and q = 2q′ + 1,
where p′, q′ are also two large primes. Let N = p · q. Then the Euler totient function
φ(N) = (p−1)(q−1). Take a ∈R Z

∗
N

satisfying Jacobi symbol
(

a
N

)
= −1. Then choose

e ∈ Z with

gcd
(

e,
1
4
φ(N)

)
= 1, 1 < e <

1
4
φ(N).

And then compute d ∈ Z, such that

ed ≡ 1
2

(
1
4
φ(N) + 1

)
mod

1
4
φ(N), 1 < d <

1
4
φ(N).

The public key is (a, e, N), and the private key is d.
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Encryption. Suppose that plaintext x ∈ ZN , gcd(x, N) = 1. Then

E(x) =

⎧
⎪⎨

⎪⎩

x2e mod N, if
( x

N

)
= 1;

(ax)2e mod N, if
( x

N

)
= −1.

So, the ciphertext is (E(x), c1, c2) where

c1 =

⎧
⎪⎨

⎪⎩

0, x >
N

2
,

1, x <
N

2
,

c2 =

⎧
⎪⎨

⎪⎩

0, if
( x

N

)
= 1,

1, if
( x

N

)
= −1.

Decryption. If c2 = 0, then x2e ≡ E(x) (mod N). Compute

E(x)d ≡ x2ed ≡ x1+ 1
4 φ(N) ≡ ±x (mod N).

Then, plaintext x can be obtained from identifier digit c1.
If c2 = 1, then (ax)2e ≡ E(x) (mod N). Compute

E(x)d ≡ (ax)2ed ≡ (ax)1+
1
4 φ(N) ≡ ±ax (mod N).

That is, x ≡ ±a−1(E(x))d (mod N). Then from the identifier digit c1, the plaintext
x can be obtained.

How to prove or disprove that breaking the conventional RSA system is as hard as
factoring is still an open problem. In ref. [20], Boneh and Venkatesan have provided
evidence that breaking low-exponent RSA cannot be equivalent to factoring integers,
while the improved RSA cryptosystem here has been proved based on factorization of a
large integer (refer to refs. [18, 19, 21]) for the detailed security proof.) Therefore, the
improved RSA scheme will be more secure than the original one[22]. Of course, in order
to improve the security in the practical application, Optimal Asymmetric Encryption
Padding (OAEP) technique[23] should be applied to the improved RSA primitive. For
the multi-dimension RSA please refer to refs. [24, 25].

2.2 Improved RSA signature

Assume that A is a signer who chooses a universal hash function H0 : {0, 1}∗ → Z
∗
N

in the system. The public key of A is (a, e, N, H0), and the private key is d as above1) .
Then, the improved RSA signature is described as follows:

Signing. Suppose that m ∈ {0, 1}∗ is the message to be signed. A first computes
H0(m), and then computes c1 ∈ {0, 1} and σ, where

(
H0(m)

N

)
= (−1)c1 , σ = (ac1H0(m))2d mod N.

The signature on message m is (c1, σ).
Verification. Check whether the following equality holds:

σe = ±ac1H0(m) mod N.

If the equality holds, the signature will be accepted, otherwise rejected,

σe = (ac1H0(m))2ed = (ac1H0(m))
1
4 φ(N)+1 = ±ac1H0(m) mod N.

1) Here, when e = 1, it is the improved Rabin signature scheme. See ref. [26] for more details.
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2.3 Blind improved RSA signature

Suppose that A is the signer and B is the requester in the system. The public key
of A is (a, e, N, H0), and the corresponding private key is d as above.

Now assume that B wants to get A’s blind signature on message m. Then the
two-party protocol is as follows:

1. The requester B first computes c1 ∈ {0, 1} such that
(

H0(m)
N

)
= (−1)c1 , which

can ensure the Jacobi symbol
(

ac1H0(m)
N

)
= 1. Let m′ = ac1H0(m) mod N be the

new message to be signed. Choose the blind factor b ∈ ZN, satisfying
(

b
N

)
= 1. B then

computes and sends M = bem′ mod N to the signer A.
2. On receiving the message M , A first checks

(
M
N

)
= 1. If it holds, A computes

sig = M2d = (bem′)2d ≡ ±bm′2d mod N and sends sig to the requester B. Otherwise,
A terminates.

3. B computes sign(m) = sig/b = ±m′2d mod N . Obviously, (m, sign(m), c1) is a
valid signature on m.

4. Later, anyone can verify the signature by checking the following equality

(sign(m))e = ±m′2ed = ±m′1+ 1
4 φ(N) = ±ac1H0(m) mod N.

2.4 Partial blind improved RSA signature

Suppose that A is the signer and B is the requester in the system. The public key of
A is (a, e, N, H0), and the corresponding private key is (d, φ(N)) as above. In addition,
let F be a universal hash function satisfying F (x) ≡ 1 mod 2 for any x.

Now, assume that the requester B wants to get the signer A’s blind signature on
message m. They first agree on a common information info in a predetermined way.
We set v = F (info). Then, they execute the issuing protocol as follows:

1. The requester B first computes c1 ∈ {0, 1} such that
(

H0(m)
N

)
= (−1)c1 , which

can ensure the Jacobi symbol
(

ac1H0(m)
N

)
= 1. Let m′ = ac1H0(m) mod N be the

new message to be signed. Choose the blind factor b ∈ ZN, satisfying
(

b
N

)
= 1. B then

computes and sends M = bevm′ mod N to the signer A.
2. After A receives the message M , A first checks

(
M
N

)
= 1. If it does not hold, he

terminates. Otherwise, he computes v−1 such that v · v−1 ≡ 1 mod 1
4φ(N). Then he

computes sig = M2dv−1
= (bevm′)2dv−1

= ±bm′2dv−1
mod N and sends sig to B.

3. B computes sign(m) = sig/b = ±m′2dv−1
mod N . Obviously, (m, sign(m), c1) is

a valid signature on m.
4. One can verify the signature by checking the following equality:

(sign(m))ev = ±ac1H0(m) mod N.

If the equality holds, the signature will be accepted, otherwise rejected,

(sign(m))ev = ±m′2ed = ±m′1+ 1
4 φ(N) = ±ac1H0(m) mod N.

2.5 Discrete logarithm equality protocol

In 2000, Shoup[9] proposed a well-known discrete logarithm equality protocol, which
allows to demonstrate knowledge of a secret such that no useful information is revealed
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in the process. We denote the protocol by DLE protocol. In this subsection, we briefly
review the protocol in Z

∗
N

of unknown order.
Let H be a hash function. Assume that g1, g2 are two random generators in the

subgroup of Z
∗
N
, the prover P owns a secret d, and h1, h2 such that h1 ≡ gd

1 mod N

and h2 ≡ gd
2 mod N . In order to convince the verifier V that he/she indeed owns the

secret d but not expose it, the prover P will run DLE(g1, g2, h1, h2, d) as follows.
1. P selects w ∈ Z

∗
N
, computes a1 and a2

a1 ≡ gw
1 mod N, a2 ≡ gw

2 mod N,

then computes c = H(g1, g2, h1, h2, a1, a2) and r = dc + w, and then sends (r, a1, a2)
as the proof of knowing the secret d.

2. V computes c = H(g1, g2, h1, h2, a1, a2), and then checks

gr
1 ≡ hc

1 · a1 mod N, gr
2 ≡ hc

2 · a2 mod N.

If they both hold, V can be convinced that P indeed knows the secret d. The DLE
(g1, g2, h1, h2, d) protocol is an efficient knowledge proof protocol. For its security
please refer to ref. [9].

3 The proposed scheme

We now give a full description of our robust threshold partial blind signature scheme
in this section. The scheme is composed of four parts: the system setting, key gen-
eration protocol, sub key verifying protocol and signature generation protocol. We
describe each of them in turn.

3.1 System setting

Key management center (KMC) chooses two secure large primes p, q satisfying p =
2p′ + 1 and q = 2q′ + 1, where p′, q′ are also two large primes. Then, it computes the
improved RSA modulus N = pq, the Euler totient function φ(N) = (p− 1)(q − 1) and
e, d ∈ Z, where

ed ≡ 1
2

(
1
4
φ(N) + 1

)
mod

1
4
φ(N).

KMC also takes α ∈R Z
∗
N

satisfying Jacobi symbol
(

α
N

)
= −1, an element g with order

1
4φ(N) and chooses three universal hash functions H0 : {0, 1}∗ → Z

∗
N
, H and F , where

F (x) ≡ 1 mod 2 for any x. Then, the public key is (α, g, e, N, H0, H, F ) and the private
key is (d, φ(N)). Moreover, KMC also prepare some common information info that
represents the date or the amount of an e-cash.

3.2 Key generation protocol

KMC first randomly selects d1 satisfying gcd(d1,
1
4φ(N)) = 1 and let d1d ≡ d2 mod

1
4φ(N), where 1 < d1, d2 < 1

4φ(N) and d1 �= d2. Here d2 is also called the shadow of
the system key d.

Then KMC chooses a polynomial f(x) ∈ Z 1
4 φ(N)[x] of degree t − 1 with d2 = f(0)

and randomly chooses and publishes x1, x2, . . . , xn ∈ Z 1
4 φ(N) satisfying
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gcd
(

xi − xj ,
1
4
φ(N)

)
= 1, (i �= j). (1)

Then f(x) = d2 + c1x + . . . + ct−1x
t−1. In the initial stage, KMC can compute

yi = f(xi) over Z 1
4 φ(N), i = 1, 2, . . . , n. Clearly, if yil

(l = 1, 2, . . . , t) are known, then
from the interpolation formula we can get

d2 ≡ f(0) ≡
∑

1�l�t

yil

∏

1�w�t,w �=l

(−xiw )(xil
− xiw )−1 mod

1
4
φ(N). (2)

Eq. (1) shows that (xil
− xiw )−1 mod 1

4φ(N) exists and so eq. (2) is computable
under the condition that 1

4φ(N) is known.
And then KMC chooses the following parameters: N, e, b, (i, xi)(i = 1, 2, . . . , n), and

computes

zi ≡ yia
−1 mod

1
4
φ(N), (i = 1, 2, . . . , n), (3)

where a =
∏

1�j<i�n(xi − xj) and a−1 satisfying a · a−1 ≡ 1 mod 1
4φ(N). By eq.

(1), a−1( mod 1
4φ(N)) is computable. KMC secretly sends (i, zi), (i = 1, 2, . . . , n) to n

players Pi(i = 1, 2, . . . , n).
Finally, KMC computes v = F (info), and sends (vd1)−1 mod 1

4φ(N) to a special
trustee T (for example, the dealer in e-cash or administrator in electronic voting) in a
secure way. Clearly only T knows the value of (vd1)−1 mod 1

4φ(N).

3.3 Sub key verifying protocol

Each player Pi(i = 1, 2, . . . , n) can verify his/her key zi(i = 1, 2, . . . , n) by executing
the following steps:

1. KMC computes and broadcasts h(zi) ≡ gzi mod N , (i = 1, 2, . . . , n).
2. Each player Pi(i = 1, 2, . . . , n) can use his/her own (i, zi) to verify the equation:

gzi ≡ h(zi) mod N. (4)

If eq. (4) holds, his/her key is accepted, otherwise rejected.

3.4 Signature generation protocol

Now assume that a requester B requests the trustee T to make a blind signature on
message m. For simplicity, we will only discuss the case where

(
H0(m)

N

)
= 1. For the

other case where
(

H0(m)
N

)
= −1, H0(m) can be easily turned into the default case by

multiplying H0(m) with the factor α. Then,
(

H0(m)·α
N

)
= 1.

The signature issuing protocol is executed as follows:
1. B first computes v = F (info) and chooses the blind factor b ∈ ZN, satisfying

( b
N ) = 1, and then sends B(m) ≡ bevH0(m) mod N to T .

2. On receiving the blinded message B(m), T checks
(

B(m)
N

)
= 1. If it does not hold,

T refuses the signing operation. Otherwise, T uses (vd1)−1 mod 1
4φ(N) to compute

B′(m) ≡ (B(m))2(vd1)−1
mod N , and sends it to t players Pil

(1 � l � t). Meanwhile
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T must obtain the license that is empowered by some authority organization and show
the license to these players.

3. After verifying the license, each player Pil
(1 � l � t) computes

B′(m)zil = (B(m))2(vd1)−1zil ≡ (bevH0(m))2(vd1)−1zil mod N, (5)

and responds it to T . At the same time, Pil
must prove that it is correctly generated. In

other words, he should prove log(B′(m)) (B′(m))zil = logg gzil by the discrete logarithm
equality protocol DLP(B′(m), g, B′(m)zil , gzil , zil

) in section 2.5.
4. Once t partial signatures B′(m)zil , l = 1, 2, · · · , t are received and verified, T can

compute a′′ and bl, (l = 1, 2, . . . , t), where

a′ =
∏

1�l,w�t,w<l

(xil
− xiw ), a′′ =

a

a′ , bl =
a′∏

1�w�t,w �=l(−xiw )
∏

1�l,w�t,w �=l(xil
− xiw )

. (6)

By eqs. (5) and (6), T can compute

sign′ =

(
t∏

l=1

(
(bevH0(m))2(vd1)−1zil

)bl

)a′′

= (bevH0(m))
2(vd1)−1a′′∑

1�l�t zil

a′ ∏
1�w�t,w �=l(−xiw

)
∏

1�l,w�t,w �=l(xil
−xiw

)

= (bevH0(m))2(vd1)−1a′′a−1a′d2

= (bevH0(m))2v−1d ≡ ±bH0(m)2v−1d mod N.

5. T then sends sign′ to the requester B.
6. Since the blind factor b is chosen by B, B can gain T ’s signature on message m

by dividing sign′ with b:

sign = sign′/b ≡ ±H0(m)2v−1d mod N.

And then, (sign, m, v) constitutes a valid signature on m issued by T and t players.
7. To verify (sign, m, v), any one can examine the following equality:

(sign)ev = ±H0(m)2ev·v−1d ≡ ±H0(m)1+
1
4 φ(N) ≡ ±H0(m) mod N.

4 Security discussion

In this section, we discuss some security properties of our proposed scheme. Precisely,
we mainly focus on the properties of blindness, unforgeability and robustness.

4.1 Blindness

Blindness is the main property of a blind signature, which ensures both the user
privacy and data authenticity. Our proposed threshold partial blind signature scheme
is essentially to extend the partial blind signature. Therefore, to examine its blindness,
we first prove the following two lemmas.

Lemma 1. The proposed blind improved RSA signature in subsection 2.3 is blind
if the blind factor b is chosen at random.

Proof. To prove the scheme is blind, we should prove there exists some random
value, which can map a view of signer during the issuing protocol into a signature.
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Observe the issuing protocol, the requester B picks a blind factor b ∈ ZN to compute
the blinded message M = bem′( mod N) and sends it to signer A. As the blind factor
b is randomly chosen and kept secret only by the requester B, the signer A cannot get
the message m′ from blinded message M . Therefore, the property of blindness can be
satisfied.

Lemma 2. The proposed partial blind improved RSA signature in subsection 2.4
is blind if the blind factor b is chosen at random.

Proof. Observe the issuing protocol. The only difference between the partial
blind improved RSA signature and the blind improved RSA signature is that there is
a negotiated common information v = F (info) such that v ≡ 1 mod 2 in the former
scheme.

From the blinded message M = bevm′ mod N , the negotiated common information
v = F (info) does not affect the randomness of blinded message M . Therefore, signer
A still cannot know the message m′, and the lemma holds immediately.

With the above two lemmas, we can easily show that the proposed threshold partial
blind signature scheme also satisfies the blindness.

Theorem 1. The proposed partial blind threshold signature scheme in subsection
3 is blind if the blind factor b is chosen at random.

Proof sketch. Since the requester B chooses a random blind factor b ∈ ZN and
computes B(m) ≡ bevH0(m) mod N to T , similar to the above lemmas’ proof, the
blindness obviously follows.

4.2 Unforgeability

The widely admitted security notion for digital signature is the existential unforge-
ability under an adaptive chosen message attack[27]. This notion notices the fact that
an adversary cannot produce a valid signature, even he has obtained the signature of
polynomially many messages of his choice. Since all blind signature schemes here are
based on the improved RSA signature. Therefore, we will use the Coron’s idea[24] to
prove that the improved RSA signature is secure in the random oracle model[29].

Theorem 2. Suppose that the improved RSA is a (τ ′, ε′)-secure. Then, for any
qs, qh, the improved RSA signature scheme in subsection 2.2 is (τ, qs, qh, ε)-secure,
where

ε � exp(1) · (qs + 1) · ε′,
τ = τ ′ − (qs + qh + 1) · Cost(·),

and qh, qs denote the number of queries to the random oracle H0 and to the signature
oracle, and Cost(·) denotes the main time cost.

Proof. Suppose A is an adversary who can (τ, qs, qh, ε)-break the improved RSA
signature scheme. We assume that qh queries to H0 are all distinct. Then, we will use
A to construct another algorithm B, who can break the improved RSA with another
non-negligible ε′ and within a running time τ ′,

ε′ � 1
exp(1)(qs + 1)

· ε,

τ ′ = τ + (qs + qh + 1) · Cost(·).
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At first, the algorithm B is given a challenge as follows:
Given (N, e, y = xe mod N), compute x.
Then, the algorithm B will simulate the challenger of A and interact with A in the

following game.
Setup: The algorithm B chooses a hash function H0 : {0, 1}∗ → Z

∗
N
, then sets and

gives the public key (N, e, H0) to A. And in order to achieve the perfect simulation,
H0 behaves as a random oracle controlled by B.

H0-queries: At any time, A provides a message mi for H0 oracle query. To
respond to such H0-queries, B should maintain an H-list, which is initially empty and
records all responses to previous H-queries. B selects a random ri ∈ Z

∗
N

satisfying
Jacobi symbol

(
ri

N

)
= 1, and then

1. with probability λ, computes re
i mod N , adds < mi, ri, r

e
i > to an H-list, and

responds to A with H0(mi) = re
i mod N , where λ is a fixed probability determined

later[24];
2. with probability 1−λ, computes y ·re

i mod N , adds < mi, ri, y ·re
i > to an H-list,

and responds to A with H0(mi) = y · re
i mod N .

Signing-queries: When A makes a signature oracle query on a message mi, which
has been asked for H0 oracle query, B looks up the H-list. If H0(mi) = re

i mod N , B
responds to ri as the signature. Otherwise, B terminates the game and admits failure.

Solving the improved RSA: Finally, the adversary A terminates the game and
outputs a valid forgery (m, σ). Here we assume that the hash value H(m) of m has
been asked and existed in H-list. If H(m) = y · re

i mod N , we will have σ = H(m)2d =
(y · re

i )
2d = ±y2d · ri mod N . Then x = y2d = ±σ/ri mod N . Otherwise, B also

terminates the game and admits failure.
Now, we study the probability of B to solve the improved RSA. From the above

construction, we know the probability that B response to all signature queries is at
least λqs . Then he outputs the expected x with probability 1 − λ.

And thus, B solves the improved RSA with probability at least λqs(1−λ). Therefore,
we obtain

ε′ � λqs(1 − λ)ε.

Since the maximum value of λqs(1 − λ) is 1
qs+1 ·

(
1

1+ 1
qs

)qs

, when λ = qs

qs+1 , we will

have

ε′ � 1
qs + 1

·
(

1
1 + 1

qs

)qs

· ε.

And for large enough qs,
(

1
1+ 1

qs

)qs ≈ 1
exp(1) , so

ε′ � 1
exp(1)(qs + 1)

· ε.

The main cost of algorithm B is that of running the adversary A, hash oracle queries
and signing oracle queries. Thus we can add these values and write the running time
as

τ ′ = τ + (qs + qh + 1) · Cost(·).
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This completes the proof.
Since blind improved RSA signature, partial blind improved RSA signature and

threshold partial blind signature are all based on the improved RSA signature, we can
safely draw a conclusion that they also satisfy the property of unforgeability.

4.3 Robustness

The robust threshold idea in our scheme is an innovative concept, which can be
suitable to many application occasions, especially when the system key has some other
purposes.

Theorem 3. The proposed threshold partial blind signature scheme in section 3
is robustness.

Proof sketch. Same as the general threshold signature schemes, our proposed
partial blind threshold signature scheme also satisfies two basic properties: any t(t < n)
or more sub-secrets can make a valid signature easily, while any t − 1 or fewer sub-
secrets cannot make a valid signature. Besides these, our proposed scheme also satisfies
robustness. That is, the system key d is not exposed during any valid signature courses.
We can see, even though n players ally, they still cannot reconstruct the system secret
key d but the shadow d2 mod 1

4φ(N), since 1
4φ(N) is unknown. In order to gain the

system secret key d from d1d ≡ d2 mod 1
4φ(N), they must obtain the random d1. But

just as the proof in ref. [18], without knowing the factorization of large integer N , they
cannot do that. Therefore, the system secret key d is secure and the scheme is robust.

5 Conclusion

A perfect threshold partial blind signature should satisfy the properties of blindness,
unforgeability and robustness. In this paper, we have proposed such a threshold partial
blind signature based on improved RSA cryptosystem. Thanks to its superior charac-
teristics, the proposed scheme can have a bright future in many practical applications
such as e-cash and e-voting systems. We partially proved the security of our scheme
in the random oracle model.
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