
EE282 Lecture 2

Processor Technology

Daniel Sanchez

http://eeclass.stanford.edu/ee282

EE282 – Spring 2011 – Lecture 02

2

The Big Picture

 System diagram of a modern laptop:

 Today’s lecture: Focus on processor

3

The Big Picture

 Processor chip has multiple logic blocks

 Today’s lecture: Focus on core microarchitecture

Core 1 Core 2 Core 3

L3 Cache

Memory controller
I/
O

s

I/O
s

Core 0Core 0

4

Today’s Lecture: Advanced
Core Microarchitecture

 Goals:

 Review modern microprocessor techniques

 Understand the bottlenecks & insights into solving them

 Review processor characteristics from a system perspective

 Lecture outline:

 Wide and superscalar pipelines

 Prediction, renaming and out-of-order execution

 Challenges and limitations for advanced processors

 Want to learn more?

 EE382A “Advanced Processor Architecture,” Fall 2011

5

Review:
EE108B Microarchitecture

 Single-cycle design

Decoder

Instruction

Fetch

Decode &

Read operands

Execute

Memory

access

Writeback

PC

Memory

ALU

Memory

Register File

6

Review:
EE108B Microarchitecture

 Pipelined design

 To reduce stalls:

 Forwarding paths for data
dependencies

 Predict-not-taken branches &
speculation (flush) for control
dependencies

 Instruction and data caches
to reduce memory stalls

Decoder

Instruction

Fetch

Decode &

Read operands

Execute

Memory

access

Writeback

PC

Memory

ALU

Memory

Register File

7

Review:
Microprocessor Performance

 Execution time = Instruction Count * CPI * Clock cycle time (CCT)

 Performance is 1/Execution time

 CPI = CPIideal + CPIstall

 CPIideal: cycles per instruction if no stalls

 CPIstall contributors

 Data hazards

 RAW, WAR, WAW

 Structural hazards

 Control hazards

 Branches

 Memory latency

 Cache misses

8

5-stage Pipelined Processors
(MIPS R3000, circa 1985)

 Advantages

 CPIideal is 1 (pipelining)

 No WAW or WAR hazards

 Simple, elegant

 Still used in ARM & MIPS processors

 Shortcomings

 Upper performance bound is CPI=1

 High-latency instructions not handled well

 1 stage for accesses to large caches or multiplier

 Clock cycle is high

 Unnecessary stalls due to rigid pipeline

 If one instruction stalls anything behind it stalls

Fetch

Decode

Read Registers

ALU

Memory

Write Registers

9

Improving the 5-stage Pipeline
Performance

 Higher clock frequency (lower CCT): deeper pipelines

 Overlap more instructions

 Higher CPIideal: wider pipelines

 Insert multiple instruction in parallel in the pipeline

 Lower CPIstall:

 Diversified pipelines for different functional units

 Out-of-order execution

 Balance conflicting goals

 Deeper & wider pipelines more control hazards

 Branch prediction

 It all works because of instruction-level parallelism (ILP)

10

Instruction-Level Parallelism

 Sequential execution order

ld a

ld b

sub a-b

mul 3(a-b)

ld c

mul ac

mul 7ac

add 3(a-b)+7ac

st d

 Data-flow execution order
acbaD 7)(3

ld ald b ld c

+

*-

* *

st d

11

Deeper Pipelines
 Idea: Break up instruction into N pipeline

stages

 Ideal CCT = 1/N compared to non-pipelined

 So let’s use a large N

 Other motivation for deep pipelines:

 Not all basic operations have the same latency

 Integer ALU, FP ALU, cache access

 Difficult to fit them in one pipeline stage

 CCT must be large enough to fit the longest one

 Break some of them into multiple pipeline stages

 e.g. data cache access in 2 stages, FP add in 2 stage,
FP mul in 3 stage…

Fetch 1

Decode

ALU

Memory 1

Write Registers

Fetch 2

Read Registers

Memory 2

12

Limits to Pipeline Depth

 Each pipeline stage introduces some overhead (O)

 Delay of pipeline registers

 Inequalities in work per stage

 Cannot break up work into stages at arbitrary points

 Clock skew

 Clocks to different registers may not be
perfectly aligned

 If original CCT was T, with N stages CCT is T/N+O

 If N→ , speedup = T / (T/N+O) → T/O

 Assuming that IC and CPI stay constant

 Eventually overhead dominates and deeper pipelines have
diminishing returns

T

T/N O T/N O

13

Pipelining Limits?

14

Deeper Pipelines Review

 Advantages: Higher clock frequency

 The workhorse behind multi-GHz processors

 Opteron: 11; UltraSparc: 14; Power5: 17; Pentium4: 22/34;
Nehalem: 16

 Cost

 Complexity: More forwarding & stall cases

 Disadvantages

 More overlapping more dependencies more stalls

 CPIstall grows due to data and control hazards

 Clock overhead becomes increasingly important

 Power consumption

15

Wide or Superscalar Pipelines

 Idea: Operate on N instructions each clock
cycle

 CPIideal = 1/N

 Options (from simpler to harder)

 One integer and one floating-point instruction

 Any N=2 instructions

 Any N=4 instructions

 Any N=? Instructions

 What are the limits here?

Fetch

Decode

Read Registers

ALU

Memory

Write Registers

16

Superscalar Pipelines Review
 Advantages: lower CPIideal (1/N)

 Opteron: 3, UltraSparc: 4, Power5: 8, Pentium4: 3; Core 2: 4;
Nehalem: 4

 Cost

 Need wider path to instruction cache

 Need more ALUs, more register file ports, …

 Complexity: more forwarding & stall cases to check

 Disadvantages

 Parallel execution more dependencies more stalls

 CPIstall grows due to data and control hazards

17

Diversified Pipelines

 Idea: decouple the execution portion of the
pipeline for different instructions

 Common approach:

 Separate pipelines for simple integer,
integer multiply, FP, load/store

 Advantage

 Avoids unnecessary stalls

 e.g. slow FP instruction does not block
independent integer instructions

 Disadvantages

 WAW hazards

 Imprecise (out-of-order) exceptions

Fetch

Decode

Read Registers

IntAdd

Write Registers

IntMult MemoryFPU

IntMult FPU Memory

FPU

FPU

Memory

18

Putting it All Together: A Modern
Superscalar Out-of-Order Processor

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Reorder Buffer

19

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Branch Penalty
 >3 cycles to resolve a branch/jump

 Latency of I-cache

 Decode & execute latency

 Buffering

 Cost of branch latency?

 Assume 5 cycles to resolve & 4-way
superscalar

 Cost of branch = 5*4 instructions

 Typical programs:

 1 branch every 4 to 8 instructions

20

Branch Prediction

 Goal: Eliminate stalls due to taken branches

 Gets more critical as pipeline gets longer & wider

 Idea: Predict the outcome of control-flow instructions
dynamically

 Predict both the branch condition and the target

 Works well because most branches have repeated behavior

 e.g. branches for loops are usually taken

 e.g. termination/limit/error tests are usually not taken

 Why predict dynamically?

 Branch behavior often difficult to analyze statically

 Branch behavior may change during program execution

21

What is Difficult to Predict?

 For branches

 Difficult: the branch condition

 Easy: the branch target (PC+offset)

 For jumps

 Trivial: the jump condition (always taken)

 Easy: the jump target (PC+4+offset)

 For jump register, function call, function returns

 Trivial: the jump condition (always taken)

 Difficult: the jump target

22

Predicting the Branch Condition:
Simple Branch History Table (BHT)

 Basic idea:

 Next branch outcome is likely to be same as
the last one

 A 2m x 1 bit table

 Algorithm

 Index table with m least significant bits of PC

 If bit==0, predict not taken

 If bit==1, predict taken

 After executing the branch, update table if
prediction was wrong

PC

m

2m bits

1

23

Predicting the Target Address:
Branch Target Buffer (BTB)

 BTB: A cache for branch targets

 Stores targets for taken branches, jr, function calls

 Reduce size: Don’t store prediction for not taken branches

 Algorithm: Access in parallel with instruction cache

 If hit, use predicted target

 If miss, use PC+ 16 (assuming 4-way fetch)

 Update after branch is executed

TAG Branch Target

PC

=
Predicted target

Use Prediction?

24

Review of Advanced Branch
Prediction
 Numerous designs and variations

 Goal: Address shortcomings of BHT & exploit program patterns

 Basic ideas

 Use >1b per BHT entry to add hysteresis

 Use PC & global branch history to address BHT

 Detect global and local correlation between branches
 E.g. nested if-then-else statements

 E.g. short loops

 Use multiple predictors and select most likely to be correct
 Capture different patterns with each predictor

 Measure and use confidence in prediction
 Avoid executing instructions after difficult to predict branch

 Neural nets, filtering, separate taken/non-taken streams, …

 What happens on mispredictions

 Update prediction tables

 Flush pipeline & restart from mispredicted target (expensive)

25

Dealing with WAR & WAW:
Register Renaming
 WAR and WAW hazards do not represent real data communication

1. R1 = R2 + R3

2. R4 = R1 + R5

3. R1 = R6 + R7

 If we had more registers, we could avoid them completely!

 Register renaming: use more registers than the ~32 in the ISA

 Architectural registers mapped to large pool of physical registers

 Give each new “value” produced its own physical register

 Before & after renaming

 R1 = R2 + R3 R1 = R2 + R3

 R4 = R1 + R5 R4 = R1 + R5

 R1 = R6 + R7 R8 = R6 + R7

 R6 = R1 + R3 R9 = R8 + R3

26

Dealing with Unnecessary
Ordering: Out-of-Order Dispatch

 In-order execution: Instruction dispatched to a

functional unit when
 All older instructions have been dispatched

 All operands are available & FU available

 Out-of-order execution: Instruction dispatched when
 All operands are available & FU available

 Essentially, out-of-order execution recreates data-flow

order

 Implementation
 Reservation stations or instruction window

 Keep track when operands become available

27

Dealing with Memory
Ordering

 When can a load read from the cache?
 Option 1: When its address is available & all older stores done

 Option 2: When its address is available, all older stores have address
available, and no RAW dependency

 Option 3: When its address is available
 Speculate no dependency with older stores, must check later

 When can a store write to the cache?
 It must have its address & data

 All previous instructions must be exception free

 It must be exception free

 All previous loads have executed or have address
 No dependency

 Implementation with load/store buffers with associative

search

28

Dealing with Precise
Exceptions: Re-order Buffer

 Precise exceptions: Exceptions must occur in same order
as in unpipelined, single-cycle processor

 Older instruction first, no partial execution of younger
instructions

 Re-order buffer: A FIFO buffer for recapturing order

 Space allocated during instruction decode, in-order

 Result updated when execution completes, out-of-order

 Result written to registers or write-buffer in-order

 Older instruction first

 If older instruction not done, stall

 If older instruction has exception, flush buffer to eliminate results
of incorrectly executed instructions

29

Putting it All Together: A Modern
Superscalar Out-of-Order Processor

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Reorder Buffer

30

Memory Hierarchy in Modern
Processors

 Instruction cache:
 8 to 64KB, 2 to 4 way associative, 16 to 64B blocks, wide access

 Data cache:
 8 to 64KB, 2 to 8 way associative, 16 to 64B blocks, multiported

 2nd level unified cache:
 256KB to 4MB, >4-way associative, multi-banked

 Prefetch engines:
 Sequential prefetching for instructions/data

 When a cache line is accessed, fetch the next few consecutive lines

 Strided prefetching for data
 Detect a[i*k] type of accesses and prefetch proper cache lines

 TLBs

31

The Challenges for Superscalar
Processors

 Clock frequency: getting close to pipelining limits
 Clocking overheads, CPI degradation

 Branch prediction & memory latency
 Limit the practical benefits of out-of-order execution

 Power consumption
 Gets worse with higher clock & more OOO logic

 Design complexity
 Grows exponentially with issue width

 Limited ILP

 Increasingly difficult to scale single-processor architectures
 shift to multi-core chips

32

Putting it all Together: Intel
Core i7 (Nehalem)
 4 cores/chip

 16 pipeline stages, ~3GHz

 4-wide superscalar

 Out of order, 128-entry
reorder buffer

 2-level branch predictors

 Caches:

 L1: 32KB I + 32KB D

 L2: 256KB

 L3: 8MB, shared

Core 1 Core 2 Core 3

L3 Cache

Memory controller

I/
O

s

I/O
s

Core 0

Execution
Units

Out-of-Order
Scheduling &
Retirement

L2 Cache
& Interrupt
Servicing

Instruction Fetch
& L1 I-Cache

Branch Prediction
Instruction
Decode &
Microcode

Paging

L1 Data Cache

Memory Ordering
& Execution

33

Summary

 Modern processors rely on a handful of important
techniques:
 Caching

 Instruction, data, page table

 Prediction

 Branches, memory dependencies, values

 Indirection

 Renaming, page tables

 Dependence based reordering

 Out-of-order execution

 From the system point of view the processor is:
 A high frequency, high power consumption device

 That requires high memory bandwidth

 And often needs low memory latency

