
EE282 Lecture 2

Processor Technology

Daniel Sanchez

http://eeclass.stanford.edu/ee282

EE282 – Spring 2011 – Lecture 02

2

The Big Picture

 System diagram of a modern laptop:

 Today’s lecture: Focus on processor

3

The Big Picture

 Processor chip has multiple logic blocks

 Today’s lecture: Focus on core microarchitecture

Core 1 Core 2 Core 3

L3 Cache

Memory controller
I/
O

s

I/O
s

Core 0Core 0

4

Today’s Lecture: Advanced
Core Microarchitecture

 Goals:

 Review modern microprocessor techniques

 Understand the bottlenecks & insights into solving them

 Review processor characteristics from a system perspective

 Lecture outline:

 Wide and superscalar pipelines

 Prediction, renaming and out-of-order execution

 Challenges and limitations for advanced processors

 Want to learn more?

 EE382A “Advanced Processor Architecture,” Fall 2011

5

Review:
EE108B Microarchitecture

 Single-cycle design

Decoder

Instruction

Fetch

Decode &

Read operands

Execute

Memory

access

Writeback

PC

Memory

ALU

Memory

Register File

6

Review:
EE108B Microarchitecture

 Pipelined design

 To reduce stalls:

 Forwarding paths for data
dependencies

 Predict-not-taken branches &
speculation (flush) for control
dependencies

 Instruction and data caches
to reduce memory stalls

Decoder

Instruction

Fetch

Decode &

Read operands

Execute

Memory

access

Writeback

PC

Memory

ALU

Memory

Register File

7

Review:
Microprocessor Performance

 Execution time = Instruction Count * CPI * Clock cycle time (CCT)

 Performance is 1/Execution time

 CPI = CPIideal + CPIstall

 CPIideal: cycles per instruction if no stalls

 CPIstall contributors

 Data hazards

 RAW, WAR, WAW

 Structural hazards

 Control hazards

 Branches

 Memory latency

 Cache misses

8

5-stage Pipelined Processors
(MIPS R3000, circa 1985)

 Advantages

 CPIideal is 1 (pipelining)

 No WAW or WAR hazards

 Simple, elegant

 Still used in ARM & MIPS processors

 Shortcomings

 Upper performance bound is CPI=1

 High-latency instructions not handled well

 1 stage for accesses to large caches or multiplier

 Clock cycle is high

 Unnecessary stalls due to rigid pipeline

 If one instruction stalls anything behind it stalls

Fetch

Decode

Read Registers

ALU

Memory

Write Registers

9

Improving the 5-stage Pipeline
Performance

 Higher clock frequency (lower CCT): deeper pipelines

 Overlap more instructions

 Higher CPIideal: wider pipelines

 Insert multiple instruction in parallel in the pipeline

 Lower CPIstall:

 Diversified pipelines for different functional units

 Out-of-order execution

 Balance conflicting goals

 Deeper & wider pipelines more control hazards

 Branch prediction

 It all works because of instruction-level parallelism (ILP)

10

Instruction-Level Parallelism

 Sequential execution order

ld a

ld b

sub a-b

mul 3(a-b)

ld c

mul ac

mul 7ac

add 3(a-b)+7ac

st d

 Data-flow execution order
acbaD 7)(3

ld ald b ld c

+

*-

* *

st d

11

Deeper Pipelines
 Idea: Break up instruction into N pipeline

stages

 Ideal CCT = 1/N compared to non-pipelined

 So let’s use a large N

 Other motivation for deep pipelines:

 Not all basic operations have the same latency

 Integer ALU, FP ALU, cache access

 Difficult to fit them in one pipeline stage

 CCT must be large enough to fit the longest one

 Break some of them into multiple pipeline stages

 e.g. data cache access in 2 stages, FP add in 2 stage,
FP mul in 3 stage…

Fetch 1

Decode

ALU

Memory 1

Write Registers

Fetch 2

Read Registers

Memory 2

12

Limits to Pipeline Depth

 Each pipeline stage introduces some overhead (O)

 Delay of pipeline registers

 Inequalities in work per stage

 Cannot break up work into stages at arbitrary points

 Clock skew

 Clocks to different registers may not be
perfectly aligned

 If original CCT was T, with N stages CCT is T/N+O

 If N→ , speedup = T / (T/N+O) → T/O

 Assuming that IC and CPI stay constant

 Eventually overhead dominates and deeper pipelines have
diminishing returns

T

T/N O T/N O

13

Pipelining Limits?

14

Deeper Pipelines Review

 Advantages: Higher clock frequency

 The workhorse behind multi-GHz processors

 Opteron: 11; UltraSparc: 14; Power5: 17; Pentium4: 22/34;
Nehalem: 16

 Cost

 Complexity: More forwarding & stall cases

 Disadvantages

 More overlapping more dependencies more stalls

 CPIstall grows due to data and control hazards

 Clock overhead becomes increasingly important

 Power consumption

15

Wide or Superscalar Pipelines

 Idea: Operate on N instructions each clock
cycle

 CPIideal = 1/N

 Options (from simpler to harder)

 One integer and one floating-point instruction

 Any N=2 instructions

 Any N=4 instructions

 Any N=? Instructions

 What are the limits here?

Fetch

Decode

Read Registers

ALU

Memory

Write Registers

16

Superscalar Pipelines Review
 Advantages: lower CPIideal (1/N)

 Opteron: 3, UltraSparc: 4, Power5: 8, Pentium4: 3; Core 2: 4;
Nehalem: 4

 Cost

 Need wider path to instruction cache

 Need more ALUs, more register file ports, …

 Complexity: more forwarding & stall cases to check

 Disadvantages

 Parallel execution more dependencies more stalls

 CPIstall grows due to data and control hazards

17

Diversified Pipelines

 Idea: decouple the execution portion of the
pipeline for different instructions

 Common approach:

 Separate pipelines for simple integer,
integer multiply, FP, load/store

 Advantage

 Avoids unnecessary stalls

 e.g. slow FP instruction does not block
independent integer instructions

 Disadvantages

 WAW hazards

 Imprecise (out-of-order) exceptions

Fetch

Decode

Read Registers

IntAdd

Write Registers

IntMult MemoryFPU

IntMult FPU Memory

FPU

FPU

Memory

18

Putting it All Together: A Modern
Superscalar Out-of-Order Processor

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Reorder Buffer

19

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Branch Penalty
 >3 cycles to resolve a branch/jump

 Latency of I-cache

 Decode & execute latency

 Buffering

 Cost of branch latency?

 Assume 5 cycles to resolve & 4-way
superscalar

 Cost of branch = 5*4 instructions

 Typical programs:

 1 branch every 4 to 8 instructions

20

Branch Prediction

 Goal: Eliminate stalls due to taken branches

 Gets more critical as pipeline gets longer & wider

 Idea: Predict the outcome of control-flow instructions
dynamically

 Predict both the branch condition and the target

 Works well because most branches have repeated behavior

 e.g. branches for loops are usually taken

 e.g. termination/limit/error tests are usually not taken

 Why predict dynamically?

 Branch behavior often difficult to analyze statically

 Branch behavior may change during program execution

21

What is Difficult to Predict?

 For branches

 Difficult: the branch condition

 Easy: the branch target (PC+offset)

 For jumps

 Trivial: the jump condition (always taken)

 Easy: the jump target (PC+4+offset)

 For jump register, function call, function returns

 Trivial: the jump condition (always taken)

 Difficult: the jump target

22

Predicting the Branch Condition:
Simple Branch History Table (BHT)

 Basic idea:

 Next branch outcome is likely to be same as
the last one

 A 2m x 1 bit table

 Algorithm

 Index table with m least significant bits of PC

 If bit==0, predict not taken

 If bit==1, predict taken

 After executing the branch, update table if
prediction was wrong

PC

m

2m bits

1

23

Predicting the Target Address:
Branch Target Buffer (BTB)

 BTB: A cache for branch targets

 Stores targets for taken branches, jr, function calls

 Reduce size: Don’t store prediction for not taken branches

 Algorithm: Access in parallel with instruction cache

 If hit, use predicted target

 If miss, use PC+ 16 (assuming 4-way fetch)

 Update after branch is executed

TAG Branch Target

PC

=
Predicted target

Use Prediction?

24

Review of Advanced Branch
Prediction
 Numerous designs and variations

 Goal: Address shortcomings of BHT & exploit program patterns

 Basic ideas

 Use >1b per BHT entry to add hysteresis

 Use PC & global branch history to address BHT

 Detect global and local correlation between branches
 E.g. nested if-then-else statements

 E.g. short loops

 Use multiple predictors and select most likely to be correct
 Capture different patterns with each predictor

 Measure and use confidence in prediction
 Avoid executing instructions after difficult to predict branch

 Neural nets, filtering, separate taken/non-taken streams, …

 What happens on mispredictions

 Update prediction tables

 Flush pipeline & restart from mispredicted target (expensive)

25

Dealing with WAR & WAW:
Register Renaming
 WAR and WAW hazards do not represent real data communication

1. R1 = R2 + R3

2. R4 = R1 + R5

3. R1 = R6 + R7

 If we had more registers, we could avoid them completely!

 Register renaming: use more registers than the ~32 in the ISA

 Architectural registers mapped to large pool of physical registers

 Give each new “value” produced its own physical register

 Before & after renaming

 R1 = R2 + R3 R1 = R2 + R3

 R4 = R1 + R5 R4 = R1 + R5

 R1 = R6 + R7 R8 = R6 + R7

 R6 = R1 + R3 R9 = R8 + R3

26

Dealing with Unnecessary
Ordering: Out-of-Order Dispatch

 In-order execution: Instruction dispatched to a

functional unit when
 All older instructions have been dispatched

 All operands are available & FU available

 Out-of-order execution: Instruction dispatched when
 All operands are available & FU available

 Essentially, out-of-order execution recreates data-flow

order

 Implementation
 Reservation stations or instruction window

 Keep track when operands become available

27

Dealing with Memory
Ordering

 When can a load read from the cache?
 Option 1: When its address is available & all older stores done

 Option 2: When its address is available, all older stores have address
available, and no RAW dependency

 Option 3: When its address is available
 Speculate no dependency with older stores, must check later

 When can a store write to the cache?
 It must have its address & data

 All previous instructions must be exception free

 It must be exception free

 All previous loads have executed or have address
 No dependency

 Implementation with load/store buffers with associative

search

28

Dealing with Precise
Exceptions: Re-order Buffer

 Precise exceptions: Exceptions must occur in same order
as in unpipelined, single-cycle processor

 Older instruction first, no partial execution of younger
instructions

 Re-order buffer: A FIFO buffer for recapturing order

 Space allocated during instruction decode, in-order

 Result updated when execution completes, out-of-order

 Result written to registers or write-buffer in-order

 Older instruction first

 If older instruction not done, stall

 If older instruction has exception, flush buffer to eliminate results
of incorrectly executed instructions

29

Putting it All Together: A Modern
Superscalar Out-of-Order Processor

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Reorder Buffer

30

Memory Hierarchy in Modern
Processors

 Instruction cache:
 8 to 64KB, 2 to 4 way associative, 16 to 64B blocks, wide access

 Data cache:
 8 to 64KB, 2 to 8 way associative, 16 to 64B blocks, multiported

 2nd level unified cache:
 256KB to 4MB, >4-way associative, multi-banked

 Prefetch engines:
 Sequential prefetching for instructions/data

 When a cache line is accessed, fetch the next few consecutive lines

 Strided prefetching for data
 Detect a[i*k] type of accesses and prefetch proper cache lines

 TLBs

31

The Challenges for Superscalar
Processors

 Clock frequency: getting close to pipelining limits
 Clocking overheads, CPI degradation

 Branch prediction & memory latency
 Limit the practical benefits of out-of-order execution

 Power consumption
 Gets worse with higher clock & more OOO logic

 Design complexity
 Grows exponentially with issue width

 Limited ILP

 Increasingly difficult to scale single-processor architectures
 shift to multi-core chips

32

Putting it all Together: Intel
Core i7 (Nehalem)
 4 cores/chip

 16 pipeline stages, ~3GHz

 4-wide superscalar

 Out of order, 128-entry
reorder buffer

 2-level branch predictors

 Caches:

 L1: 32KB I + 32KB D

 L2: 256KB

 L3: 8MB, shared

Core 1 Core 2 Core 3

L3 Cache

Memory controller

I/
O

s

I/O
s

Core 0

Execution
Units

Out-of-Order
Scheduling &
Retirement

L2 Cache
& Interrupt
Servicing

Instruction Fetch
& L1 I-Cache

Branch Prediction
Instruction
Decode &
Microcode

Paging

L1 Data Cache

Memory Ordering
& Execution

33

Summary

 Modern processors rely on a handful of important
techniques:
 Caching

 Instruction, data, page table

 Prediction

 Branches, memory dependencies, values

 Indirection

 Renaming, page tables

 Dependence based reordering

 Out-of-order execution

 From the system point of view the processor is:
 A high frequency, high power consumption device

 That requires high memory bandwidth

 And often needs low memory latency

