

刘振

上海交通大学 计算机科学与工程系 电信群楼3-509 liuzhen@sjtu.edu.cn

Secure Socket Layer

Socket layer

"Socket layer" lives between User application Socket application and "layer" transport transport OS layers network SSL usually lies between link NIC HTTP and TCP physical

What is SSL?

- SSL is the protocol used for most secure transactions over the Internet
- For example, if you want to buy a book at amazon.com...
 - You want to be sure that you are dealing with Amazon (one-way authentication)
 - Your credit card information must be protected in transit (data confidentiality)
 - As long as you have money, Amazon doesn't care who you are (authentication need not to be mutual)

Simple SSL-like Protocol

SSL and IPSec

- Is Alice sure she's talking to Bob?
- Achieve Data Confentiality?

Forward secrecy?

Simplified SSL Protocol

- S is randomly chosen by Alice
- $K = h(S, R_A, R_B)$
- msgs = all previous messages
- Forward secrecy?

SSL Sessions vs Connections

- SSL designed for use with HTTP 1.0
- HTTP 1.0 usually opens multiple simultaneous (parallel) connections
- SSL session establishment is costly
 Due to public key operations
- SSL has an efficient protocol for opening new connections given an existing session

SSL Connection

- Assuming SSL session exists
- So S is already known to Alice and Bob
- Again, $K = h(S,R_A,R_B)$

□ No public key operations! (relies on known S)

SSL and IPSec

IPSec and SSL

IPSec lives at the network User application SSL layer transport **IPSec** is OS transparent to IPSec network applications link NIC

physical

IKE and ESP/AH

- Two parts to discuss
 - 1. Establish a session key IKE (Internet Key Exchange)
 - How a secure channel works ESP or AH (Encapsulating Security Payload, Authentication Header)
- In SSL, it also has these two parts
 - We have only discussed the first part establishing a session key
 - We didn't discuss how the secure channel works

IKE

- IKE has 2 phases
 - Phase 1 master session key setup
 - Phase 2 ESP and/or AH key setup
- Phase 1 is comparable to SSL session
- Phase 2 is comparable to SSL connection
- In this course, we don't cover Phase 2

IKE Phase 1

- Three ways to run phase 1
 - Public key encryption based
 - Signature based
 - Symmetric key based
- For each of these, there are two different "modes" to choose from
 - Main mode
 - Aggressive mode

There are 6 variants of IKE Phase 1!

Evidence that IPSec is over-engineered?

IKE Phase 1

- According to the IKE specification,
 - Main mode MUST be implemented
 - Aggressive mode SHOULD be implemented
 - In other words, if aggressive mode is not implemented, "you should feel guilty about it"

IKE Phase 1: Signature Based (Main Mode)

- CP = crypto proposed, CS = crypto selected
- $K = h(g^{ab} \mod p, R_A, R_B)$
- SKEYID = h(R_A, R_B, g^{ab} mod p)
- proof_A = [h(SKEYID, g^a mod p, g^b mod p, CP, "Alice")]_{Alice}

IKE Phase 1: Signature Based (Aggressive Mode)

- Main difference from main mode
 - Not trying to protect identities
 - Cannot negotiate g or p

IKE Phase 1: Symmetric Key Based (Main Mode)

- $\Box \quad K_{AB} = symmetric key shared in advance$
- $\square \quad K = h(g^{ab} \mod p, R_A, R_B, K_{AB})$
- $\square SKEYID = h(K, g^{ab} \mod p)$
- □ $proof_A = h(SKEYID, g^a \mod p, g^b \mod p, CP, "Alice")$

Problems with Symmetric Key Based (Main Mode)

Catch

- Alice sends her ID in message 5
- Alice's ID encrypted with K
- To find K Bob must know K_{AB}
- To get K_{AB} Bob must know he's talking to Alice!
- Result: Alice's ID must be IP address!

IKE Phase 1: Symmetric Key Based (Aggressive Mode)

- Same format as digital signature aggressive mode
- Not trying to hide identities...
- As a result, does **not** have problems of main mode

IKE Phase 1: Public Key Encryption Based (Main Mode)

•
$$K = h(g^{ab} \mod p, R_A, R_B)$$

- SKEYID = $h(R_A, R_B, g^{ab} \mod p)$
- $proof_A = h(SKEYID, g^a \mod p, g^b \mod p, CP, "Alice")$

IKE Phase 1: Public Key Encryption Based (Aggressive Mode)

- K, $proof_A$, $proof_B$ computed as in main mode
- Note that identities are hidden
 - The only aggressive mode to hide identities
 - Then why have main mode?

Public Key Encryption Issue?

- Public key encryption, aggressive mode
- Suppose Trudy generates
 - Exponents a and b
 - Nonces $\mathbf{R}_{\mathbf{A}}$ and $\mathbf{R}_{\mathbf{B}}$
- Trudy can compute "valid" keys and proofs: g^{ab} mod p, K, SKEYID, proof_A and proof_B
- Also true of main mode

Public Key Encryption Issue?

- Trudy can create exchange that appears to be between Alice and Bob
- Appears valid to any observer, including Alice and Bob!

Plausible Deniability

- A security failure?
- In this mode of IPSec, it is a feature!
 - Plausible deniability: Alice and Bob can deny that any conversation has taken place!
- In some cases it might be a security failure
 - If Alice makes a purchase from Bob, she could later repudiate it (unless she had signed)

Summary

- SSL
- IPSec