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Public Key Cryptography: 
Encryption
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Symmetric Key Management
 Each pair of communicating entities needs a shared key
 For an n-party system, there are n(n-1)/2 distinct keys in the system 

and each party needs to maintain n-1 distinct keys.
 How to reduce the number of shared keys in the system

1. Centralized key management
2. Public keys

 How to set up shared keys
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Centralized Key Management
Online Key Distribution Server

• Only n long-term secret keys, instead of n(n-1)/2 in the system.
• Each user shares one long-term secret key with the Server.
• The Server may become the single-point-of-failure and the 

performance bottleneck.
• Secret keys are used only for the secure delivery of session keys.
• Real data are encrypted under session keys.

Alice Bob

K1 K2

session key
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Public key Encryption
• Receiver Bob has a key pair: public and private

• publish the public key such that the key is publicly known
• Bob keeps the private key secret

• Other people use Bob’s public key to encrypt messages for Bob
• Bob uses his private key to decrypt

• Security requirement 1: difficult to find private key or plaintext from ciphertext
• Security requirement 2: difficult to find private key from public key

Public key directoryPublic key directory

K

Bob’s public key

Encrypted Session Key K

Bob’s private keyBob’s private key

Encrypt DecryptDecrypt

Alice Bob
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Motivation of Public Key Cryptography (Summary)

 One problem with symmetric key algorithms is that 
the sender needs a secure method for telling the 
receiver about the encryption key.

 Plus, you need a separate key for everyone you 
might communicate with (scalability issue).

 Public key algorithms use a public-key and private-
key pair to tackle the two problems
 Each receiver has a (public key, private key) pair.
 The public key is publicly known (published).
 A sender uses the receiver’s public key to encrypt a 

message.
 Only the receiver can decrypt it with the corresponding 

private key.
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Rivest, Shamir, and Adleman (RSA)

 Randomly choose two large and roughly equal-length prime 
numbers, p and q.
 E.g. |p| = |q| = 512 bits

 Sets n = pq (n is called the public modulus)
 Randomly choose e such that gcd(e, (n)) = 1.

 e is called the public exponent.
 (n) = (pq) = (p-1)(q-1)

 Compute d such that de  1 (mod (n)).
 In other words, d is the modular inverse of e modular (n).
 d is called the private exponent.

 Public Key: PK = (n, e), Private Key: SK = d

 Encryption: C = Me mod n
 Decryption: M = Cd mod n
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Given a RSA public key (n,e), can we 
encrypt any message 



An Example of RSA Encryption and Decryption

• Choose two primes p=47 and q=71  n = pq = 3337.
• Choose e such that it is relatively prime to (n) = 46x70 = 3220.

• e.g. e = 79.
• Compute d = e-1 mod (n) using extended Euclidean algorithm.

• d  79-1 (mod 3220) = 1019
• Public key PK = (n, e) = (3337,79)
• Private key SK = d = 1019

• Encrypt M = 688  68879 mod 3337 = 1570
• Decrypt C = 1570  15701019 mod 3337 = 688
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Security of  RSA

• RSA Problem (RSAP) : Given
• a positive integer n that is a product of two distinct equal-length primes p and q,
• a positive integer e such that gcd(e, (p-1)(q-1)) = 1, and
• an integer c chosen randomly from Zn*
find an integer m such that me  c (mod n). Note: p and q are not given.

• The intractability of the RSAP forms the basis for the security of the RSA 
public-key cryptosystem.

• RSAP is closely related to the Factorization Problem but not known to be 
equivalent.

• Factorization Problem (FACTORING) : Given a positive integer n, find its 
prime factorization; that is, write n = p1

e1 p2
e2… pk

ek where the pi are primes 
and each ei  1.

• E.g. 72 = 23 ∙ 32

• The value of the RSA public exponent e can be small, say 16 bits long, but the 
value of d should be large, say at least 1000 bits long.
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When e is too small, it is insecure.



RSAP and FACTORING

• RSAP P FACTORING : The RSA problem can efficiently be reduced to the 
factorization problem.

• If one can solve FACTORING, then one can solve RSAP.

• Open Problem : Is FACTORING P RSAP?

• It is widely believed that it is true, although no proof of this is known.
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More about RSA Security Strength
 The strength of the RSA algorithm depends on the difficulty of doing 

prime factorization of large numbers:
 Knowing the public key <e, n>, if the cryptanalyst could factor n

= pq, then (n) (= (p - 1)(q - 1)) is obtained
 Knowing e and (n), d can be obtained with a known algorithm 

(Euclid’s algorithm) for finding multiplicative inverse (de = 1 mod
(n))

 To break an RSA encryption (i.e., finding the decryption key) by 
brute force (i.e., by trying all possible keys) is not feasible given the 
relative large size of the keys
 A better approach is to solve the prime factorization problem.
 The best known factorization algorithms seem to indicate that 

the number of operations to factorize a number n is estimated by

    nn lnlnlnexp 3
1
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• RSA is inefficient – it gains strength slowly
• RSA-1024 is equivalent to an 80-bit symmetric key
• RSA-2048 is equivalent to a 112-bit key (3DES)
• RSA-3072 is equivalent to 128-bit key (AES)
• RSA-7680 is equivalent to an 192-bit AES key
• RSA-15,380 is required to equal an AES-256 key!

• the performance of large size RSA is terrible

RSA: Key Length vs. Security Strength

• The computation time required for larger keys increases rapidly
• The time required for signing is proportional to the cube of the key 

length
• RSA-2048 operations require 8 times as long as RSA-1024

• Example – 60ms for RSA-1024 sign. 600ms for RSA-2048
• RSA-15,360 would take 3375 times RSA-1024, or 200 seconds!
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ElGamal Encryption Scheme
 Let p be a large prime.
 Let Zp

* = { 1, 2, 3, …, p-1 }
 Let Zp-1 = { 0, 1, 2, …, p-2 }
 a R S means that a is randomly chosen from the set S
 Let g  Zp

* such that none of g1 mod p, g2 mod p, …, gp-2 mod p is 
equal to 1.

Public Key Pair:
 Private key: x R Zp-1
 Public key: Y= gx mod p

Encryption:
1. r R Zp-1
2. A = gr mod p
3. B = MYr mod p where M  Zp

* is the message.

Ciphertext C = (A, B).

Decryption:
1. K = Ax mod p
2. M = B K-1 mod p
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An Example of ElGamal Encryption and Decryption
 Let p =2357

g = 2
Private key: x = 1751
Public key: Y = gx = 21751 = 1185 (mod 2357)

 Encryption:
 say M = 2035
1. Pick a random number r = 1520
2. Computes

A = gr  21520  1430 (mod 2357)
B = MYr  2035 x 11851520  697 (mod 2357)

 The ciphertext C = (A, B) = (1430, 697)
 Decryption:

1. Computes K  Ax  14301751  2084 (mod 2357)
2. M  B K-1  697 x 2084-1  2035 (mod 2357)
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Security of ElGamal Encryption Scheme
Encryption:
1. r R Zp-1

2. A = gr mod p
3. B = MYr mod p where M  Zp

* is the 
message.

Ciphertext C = (A, B).

• Given C = (A, B) and public key Y = gx mod p, find M without knowing x.

1. If adversary can get r from A=gr mod p, then the scheme is broken.
2. If adversary can get x from Y=gx mod p, then the scheme is broken.
3. From A=gr mod p and Y=gx mod p, if adversary can compute grx mod p, 

then the scheme is broken.

• First two correspond to DLP (Discrete Logarithm Problem)
• The last one corresponds to Diffie-Hellman Problem
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Deterministic Encryption vs. Probabilistic Encryptoin

 Deterministic Encryption
 Encrypting same messages will generate same 

ciphertexts

 Probabilistic Encryption
 Encrypting same messages will generate 

different ciphertexts
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Discrete Logarithm Problem (DLP)
 Let p be a prime number. Given two integers: g, y

 g and y are integers chosen randomly in Zp
*.

 Find a such that ga mod p = y
 a is called the discrete log of y to the base g mod p.

DLP (Discrete Log Problem)
 Given a, g and p, compute y  ga mod p is EASY
 However, given y, g and p, compute a is HARD

Factoring (revisit)
 Given p and q, compute n = pq is EASY
 However, given n, compute the prime factors p and q is HARD

DLP Example:
 For p=97, g = 5 and y= 35, compute a such that ga mod p = 35.

 We need to try all possibilities (from 1 to 96) to obtain such a

 When p is large, DLP is hard
 In practice, p should at least be 1024 bits long.
 Practical problems (not to be discussed in this course): How to generate 

and verify such a large prime number p? How to generate g?
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Diffie-Hellman Problem

 Given A=gx mod p and B=gy mod p, find C=gxy mod p.

 If DLP can be solved, then Diffie-Hellman Problem can 
be solved.

 Open Problem: If Diffie-Hellman Problem can be solved, 
can DLP be solved?
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Diffie-Hellman Key Exchange

Alice, a Bob, b

ga mod p

gb mod p

 Alice computes (gb)a = gba = gab mod p 
 Bob computes (ga)b = gab mod p
 Could use K = gab mod p as symmetric key

 This key exchange scheme is secure against eavesdroppers if Diffie-
Hellman Problem is assumed to be hard to solve.

 However, it is insecure if the attacker in the network is active: man-in-
the-middle attack. “Active” means that the attacker can intercept, 
modify, remove or insert messages into the network.
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Man-in-the-Middle Attack (MITM)

Alice, a Bob, b

ga mod p

gb mod p

Trudy, t

gt mod p

gt mod p

 Trudy shares secret gat mod p with Alice 
 Trudy shares secret gbt mod p with Bob
 Alice and Bob don’t know Trudy exists!
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Public key vs. Symmetric key

Symmetric key Public key

Two parties MUST trust each other Two parties DO NOT need to trust 
each other

Both share the same key (or one key 
is computable from the other)

Two separate keys: a public and a 
private key

Attack approach: bruteforce Attack approach: solving 
mathematical problems (e.g. 
factorization, discrete log problem)

Faster Slower (100-1000 times slower)

Smaller key size Larger key size

Examples: DES, 3DES, DESX, RC6, 
AES, …

Examples: RSA, ElGamal, ECC,…
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Summary
 PKE Concept

 RSA Encryption
 RSA Assumption

 Factoring Assumption

 ElGamal Encryption
 DL Assumption

 DH Assumption

 DH Key Exchange
 MITM Attack
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