

刘振

上海交通大学 计算机科学与工程系
电信群楼3－509
liuzhen＠sjtu．edu．cn

Public Key Cryptography:
 Encryption

Symmetric Key Management

- Each pair of communicating entities needs a shared key
- For an n-party system, there are $n(n-1) / 2$ distinct keys in the system and each party needs to maintain $n-1$ distinct keys.
- How to reduce the number of shared keys in the system

1. Centralized key management
2. Public keys

- How to set up shared keys

Centralized Key Management

Online Key Distribution Server

- Only n long-term secret keys, instead of $n(n-1) / 2$ in the system.
- Each user shares one long-term secret key with the Server.
- The Server may become the single-point-of-failure and the performance bottleneck.
- Secret keys are used only for the secure delivery of session keys.
- Real data are encrypted under session keys.

Public key Encryption

- Receiver Bob has a key pair: public and private
- publish the public key such that the key is publicly known
- Bob keeps the private key secret
- Other people use Bob's public key to encrypt messages for Bob
- Bob uses his private key to decrypt

- Security requirement 1: difficult to find private key or plaintext from ciphertext
- Security requirement 2: difficult to find private key from public key

Motivation of Public Key Cryptography (Summary)

- One problem with symmetric key algorithms is that the sender needs a secure method for telling the receiver about the encryption key.
- Plus, you need a separate key for everyone you might communicate with (scalability issue).
- Public key algorithms use a public-key and privatekey pair to tackle the two problems
- Each receiver has a (public key, private key) pair.
- The public key is publicly known (published).
- A sender uses the receiver's public key to encrypt a message.
- Only the receiver can decrypt it with the corresponding private key.

P\&Q PRIME $N=P Q$
 $E D \equiv 1$ MOD (P-1)CQ-1)
 $C=M^{E} \operatorname{MOD} N$ $M=C^{D} M O D N$

ITS IUST AN AL CORTHM

Rivest, Shamir, and Adleman (RSA)

- Randomly choose two large and roughly equal-length prime numbers, p and q.
- E.g. $|p|=|q|=512$ bits
- Sets $n=p q$ (n is called the public modulus)
- Randomly choose e such that $\operatorname{gcd}(e, \phi(n))=1$.
- e is called the public exponent.
- $\phi(n)=\phi(p q)=(p-1)(q-1)$
- Compute d such that $d e \equiv 1(\bmod \phi(n))$.
- In other words, d is the modular inverse of e modular $\phi(n)$.
- d is called the private exponent.
- Public Key: $P K=(n, e)$, Private Key: $S K=d$
- Encryption: $C=M^{e} \bmod n$
- Decryption: $M=C^{d} \bmod n$

Given a RSA public key (n, e), can we encrypt any message $M \in Z_{n}$?

An Example of RSA Encryption and Decryption

- Choose two primes $p=47$ and $q=71 \Rightarrow n=p q=3337$.
- Choose e such that it is relatively prime to $\phi(n)=46 \times 70=3220$.
- e.g. $e=79$.
- Compute $d=e^{-1} \bmod \phi(n)$ using extended Euclidean algorithm.
- $d \equiv 79^{-1}(\bmod 3220)=1019$
- Public key $\mathrm{PK}=(n, e)=(3337,79)$
- Private key SK =d=1019
- Encrypt $M=688 \Rightarrow 688^{79} \bmod 3337=1570$
- Decrypt $C=1570 \Rightarrow 1570^{1019} \bmod 3337=688$

Security of RSA

- RSA Problem (RSAP) : Given
- a positive integer n that is a product of two distinct equal-length primes p and q,
- a positive integer e such that $\operatorname{gcd}(e,(p-1)(q-1))=1$, and
- an integer c chosen randomly from $Z_{n}{ }^{*}$
find an integer m such that $m^{e} \equiv c(\bmod n)$. Note: p and q are not given.
- The intractability of the RSAP forms the basis for the security of the RSA public-key cryptosystem.
- RSAP is closely related to the Factorization Problem but not known to be equivalent.
- Factorization Problem (FACTORING) : Given a positive integer n, find its prime factorization; that is, write $n=p_{1}{ }^{e 1} p_{2}{ }^{e 2} \ldots p_{k}{ }^{e k}$ where the p_{i} are primes and each $e_{i} \geq 1$.
- E.g. $72=2^{3} \cdot 3^{2}$
- The value of the RSA public exponent e can be small, say 16 bits long, but the value of d should be large, say at least 10000 bịts tong.

RSAP and FACTORING

- RSAP \leq_{p} FACTORING : The RSA problem can efficiently be reduced to the factorization problem.
- If one can solve FACTORING, then one can solve RSAP.
- Open Problem : Is FACTORING \leq_{p} RSAP?
- It is widely believed that it is true, although no proof of this is known.

More about RSA Security Strength

- The strength of the RSA algorithm depends on the difficulty of doing prime factorization of large numbers:
- Knowing the public key <e, $n>$, if the cryptanalyst could factor n $=p q$, then $\phi(n)(=(p-1)(q-1))$ is obtained
- Knowing e and $\phi(n), d$ can be obtained with a known algorithm (Euclid's algorithm) for finding multiplicative inverse (de = 1 mod $\phi(n)$)
- To break an RSA encryption (i.e., finding the decryption key) by brute force (i.e., by trying all possible keys) is not feasible given the relative large size of the keys
- A better approach is to solve the prime factorization problem.
- The best known factorization algorithms seem to indicate that the number of operations to factorize a number n is estimated by

$$
\exp \left((\ln n)^{1 / 3}(\ln \ln n)\right)
$$

RSA: Key Length vs. Security Strength

- RSA is inefficient - it gains strength slowly
- RSA-1024 is equivalent to an 80-bit symmetric key
- RSA-2048 is equivalent to a 112-bit key (3DES)
- RSA-3072 is equivalent to 128 -bit key (AES)
- RSA-7680 is equivalent to an 192-bit AES key
- RSA-15,380 is required to equal an AES-256 key!
- the performance of large size RSA is terrible
- The computation time required for larger keys increases rapidly
- The time required for signing is proportional to the cube of the key length
- RSA-2048 operations require 8 times as long as RSA-1024
- Example - 60ms for RSA-1024 sign. 600ms for RSA-2048
- RSA-15,360 would take 3375 times RSA-1024, or 200 seconds!

ElGamal Encryption Scheme

- Let p be a large prime.
- Let $Z_{p}{ }^{*}=\{1,2,3, \ldots, p-1\}$
- Let $Z_{p-1}=\{0,1,2, \ldots, p-2\}$
- $a \epsilon_{R} S$ means that a is randomly chosen from the set S
- Let $g \in Z_{\text {* }}{ }^{*}$ such that none of $g^{1} \bmod p, g^{2} \bmod p, \ldots, g^{p-2} \bmod p$ is

Public Key Pair:

- Private key: $\mathrm{X} \in_{\mathrm{R}} Z_{\mathrm{p}-1}$
- Public key: $Y=g^{\times} \bmod p$

Encryption:

1. $r \in_{R} Z_{p-1}$
2. $A=g^{r} \bmod p$
3. $B=M Y^{r} \bmod p$ where $M \in Z_{p}{ }^{*}$ is the message.

Ciphertext $C=(A, B)$.
Decryption:

1. $K=A^{x} \bmod p$
2. $M=B K^{-1} \bmod p$

An Example of EIGamal Encryption and Decryption

- Let $p=2357$
$g=2$
Private key: $\mathrm{x}=1751$
Public key: $\mathrm{Y}=\mathrm{g}^{\mathrm{x}}=2^{1751}=1185(\bmod 2357)$
- Encryption:
- say M = 2035

1. Pick a random number $r=1520$
2. Computes

$$
\begin{aligned}
& A=g^{r} \equiv 2^{1520} \equiv 1430(\bmod 2357) \\
& B=M Y^{r} \equiv 2035 \times 1185^{1520} \equiv 697(\bmod 2357)
\end{aligned}
$$

- The ciphertext $C=(A, B)=(1430,697)$
- Decryption:

1. Computes $K \equiv A^{x} \equiv 1430^{1751} \equiv 2084(\bmod 2357)$
2. $\mathrm{M} \equiv \mathrm{B} \mathrm{K}^{-1} \equiv 697 \times 2084^{-1} \equiv 2035(\bmod 2357)$

Security of EIGamal Encryption Scheme

Encryption:

1. $r \in \in_{R-1}$
2. $A=g^{r} \bmod p$
3. $\quad B=M Y^{r} \bmod p$ where $M \in Z_{p}{ }^{*}$ is the message.

Ciphertext $C=(A, B)$.

- Given $C=(A, B)$ and public key $Y=g^{x} \bmod p$, find M without knowing x.

1. If adversary can get r from $A=g^{r}$ mod p, then the scheme is broken.
2. If adversary can get x from $Y=g^{x}$ mod p, then the scheme is broken.
3. From $A=g^{r} \bmod p$ and $Y=g^{x} \bmod p$, if adversary can compute $g^{r x} \bmod p$, then the scheme is broken.

- First two correspond to DLP (Discrete Logarithm Problem)
- The last one corresponds to Diffie-Hellman Problem

Deterministic Encryption vs. Probabilistic Encryptoin

- Deterministic Encryption
- Encrypting same messages will generate same ciphertexts
- Probabilistic Encryption
- Encrypting same messages will generate different ciphertexts

Discrete Logarithm Problem (DLP)

- Let p be a prime number. Given two integers: g, y
- g and y are integers chosen randomly in $Z_{p}{ }^{*}$.
- Find a such that $g^{a} \bmod p=y$
- a is called the discrete \log of y to the base $g \bmod p$.

DLP (Discrete Log Problem)

- Given a, g and p, compute $y \equiv g^{a} \bmod p$ is EASY
- However, given y, g and p, compute a is HARD

Factoring (revisit)

- Given p and q , compute $\mathrm{n}=\mathrm{pq}$ is EASY
- However, given n, compute the prime factors p and q is HARD

DLP Example:

- For $p=97, g=5$ and $y=35$, compute a such that $g^{a} \bmod p=35$.
- We need to try all possibilities (from 1 to 96) to obtain such a
- When p is large, DLP is hard
- In practice, p should at least be 1024 bits long.
- Practical problems (not to be discussed in this course): How to generate and verify such a large prime number p ? How to generate g ?

Diffie-Hellman Problem

- Given $A=g^{x} \bmod p$ and $B=g^{y} \bmod p$, find $C=g^{x y} \bmod p$.
- If DLP can be solved, then Diffie-Hellman Problem can be solved.
- Open Problem: If Diffie-Hellman Problem can be solved, can DLP be solved?

Diffie-Hellman Key Exchange

- Alice computes $\left(g^{b}\right)^{a}=g^{b a}=g^{a b} \bmod p$
- Bob computes $\left(g^{a}\right)^{b}=g^{a b} \bmod p$
- Could use $K=g^{a b} \bmod p$ as symmetric key
\square This key exchange scheme is secure against eavesdroppers if DiffieHellman Problem is assumed to be hard to solve.
\square However, it is insecure if the attacker in the network is active: man-in-the-middle attack. "Active" means that the attacker can intercept, modify, remove or insert messages into the network.

Man-in-the-Middle Attack (MITM)

- Trudy shares secret $\mathrm{g}^{\text {at }} \bmod \mathrm{p}$ with Alice
- Trudy shares secret $\mathrm{g}^{\text {bt }}$ mod p with Bob
- Alice and Bob don't know Trudy exists!

Public key vs. Symmetric key

Symmetric key	Public key
Two parties MUST trust each other	Two parties DO NOT need to trust each other
Both share the same key (or one key is computable from the other)	Two separate keys: a public and a private key
Attack approach: bruteforce	Attack approach: solving mathematical problems (e.g. factorization, discrete log problem)
Faster	Slower (100-1000 times slower)
Smaller key size	Larger key size
Examples: DES, 3DES, DESX, RC6,	Examples: RSA, EIGamal, ECC,...
AES, ...	

Summary

- PKE Concept
- RSA Encryption
- RSA Assumption
- Factoring Assumption
- ElGamal Encryption
- DL Assumption
- DH Assumption
- DH Key Exchange
- MITM Attack

