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Number Theory

We work on integers only



Divisors

Two integers: a and b (b is non-zero)
o b divides a if there exists some integer m such that a =
m-b
o Notation: bla
o eg. 1,2,3,4,6,8,12,24 divide 24
o bis a divisor of a

Relations

1. Ifb]|1 = b=+l

2. Ifblaandalb = b=x+a

3. IfblO = any b =0

4. TIfblgandblhthenb | (mg+ nh) for any integers m and n.



Congruence

a is congruent to b modulo n if n | a-b.

Notation: a = b (mod n)

Examples

1. 23=8(modb) because 5| 23-8

2. -11=5(mod8) because 8 | -11-5

3. 81=0(mod27) because 27 | 81-0

Properties

1. a=a(modn)

2. a=b (modn) implies b=a (mod n)

3. a=b (modn)and b =c (mod n) imply a=c (mod n)



Modular Arithmetic

modular reduction: a mod n=r
ris the remainder when a is divided by a natural number n
r is also called the residue of a mod n

it can be represented as: a = gn + r where 0 < r <n, g = a/n] where
| x| is the largest integer less than or equal to x

g is called the quotient

18 mod 7 =7

29345723547 mod 2 = 7?

Relation between modular reduction and congruence
-12=-5=2=9 (mod 7)
-12 mod 7 = 2 (what’s the quotient?)

For any integers a, b and positive integer m,a=b (mod n)iffa mod n=b
mod n.




Modular Arithmetic Operations

can do modular reduction at any point,

o a+bmodn=[amodn+bmodn]modn

o EQ.97+23mod7=[97mod7 +23mod7/]mod7=[6+2]mod7 =1
o Eg.11M-14mod8=-3mod8=5

o Eg.1Mx14mod8=3x6mod8=2



Modular Arithmetic

Z.={0,1,...,n-1}

If a+b = a+c (mod n)
then b =c (mod n)

butif ab = ac (mod n)

then b = c (mod n) only if a is relatively prime to n
o nlab—ac=nj|alb-c)

o Eg. 7x1M=7x5(mod6) = 11=5(mod6)

0 9x3=9x5(mod6) but 3!=5 (mod 6)



Prime and Composite Numbers

* Aninteger p is prime if its only divisors are +1 and +p only.
» Otherwise, it is a composite humber.

- E.g.2,35,7 are prime; 4,6,8,9,10 are not

» List of prime number less than 200:

230711131719 23 29 31 37414347 53596167 717379
83 89 97 101 103 107 109 113 127 131 137 139 149 151 157
163 167 173 179 181 191 193 197 199

* Prime Factorization: If a is a composite number, then a can be
factored in a unique way as

_ o o

a=p; 'p2 Py
where p; > p, > ... > p; are prime humbers and each «; is a natural
number (i.e. a positive nonzero integer).

e.q.12,250=72.5%. 2



Prime Factorization

It is generally hard to do (prime) factorization when
the number is large

E.g. factorize
1. 24070280312179
2.10893002480924910251
3.93874093217498173983210748123487143249761



Greatest Common Divisor (GCD)

GCD (a,b) of a and b is the largest number that divides both a and b
o E.g. GCD(60,24) =12

If GCD(a, b) =1, then a and b are said to be relatively prime

o E.g. GCD(8,15) =1

o 8 and 15 are relatively prime (co-prime)

Question: How to compute gcd(a,b)?
Naive method: factorize a and b and compute the product of

all their common factors.

eg. b40=22x33x5
144 = 24 x 32
gcd(540, 144) = 22 x 32 = 36

Problem of this naive method: factorization becomes very difficult
when integers become large.

Better method: Euclidean Algorithm (a.k.a. Euclid's GCD algorithm)
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Euclidean Algorithm

Compute gcd(911, 999) :

999=911*1+88
911=88*10+31
88=31%2+26
31=26*1+5
26=5*5+1
5=1*5+0

Hence gcd(911, 999) = 1

Rationale
Theorem gcd(a, b) = gcd(b, a mod b)

Euclid's Algorithm:

A=a, B=b

while B>0
R=AmodB
A=B,B=R

return A
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Euclidean Algorithm

Proof Sketch.

"=" (if d divides a and b then d also divides b mod a)
Suppose d|a and d|b.
For any positive integer a, b can be expressed in the form

b=qga+r=r(moda) — (1)
— bmoda=b-qa — (2)
Since d|aq, it also divides qa.
Hence from (2), we see that d | b mod a.

"<" (if d divides a and b mod a then d also divides b)

Similarly, if d|a and d|qa.
Thus d | (qa + (b mod a)),
which is equivalent to d | b.

Thus the sets of common divisors of a and b, and a and b mod a, are
identical.

Hence gcd(911, 999) = gcd(911, 999 mod 911) = gcd(911 mod 88, 88)
= gcd(31, 88 mod 31) = gcd(31 mod 26, 26) = gcd(5, 26 mod 5)
=gcd(b,1) =1,
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Modular Inverse

A is the modular inverse of B mod nif ABmod n=1.

A is denoted as B-1 mod n.

e.qg.

3 is the modular inverse of 5 mod 7. In other words, 51 mod 7 = 3.
7 is the modular inverse of 7 mod 16. In other words, 7! mod 16 = 7.

However, there is no modular inverse for 8 mod 14.

There exists a modular inverse for B mod n iff B is relatively prime

to n.

Question:
What's the modular inverse of 911 mod 999?
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Extended Euclidean Algorithm

The extended Euclidean algorithm can be used to solve the integer
equation

ax + by = gcd(a, b)
For any given integers a and b.

Example
Let a = 911 and b = 999. From the Euclidean algorithm,

999 =1x 911+ 88
911 =10 x 88 + 31

88 =2 x 31+26
31=1x26+5
26 =5 x5 +1 = gcd(aq, b) =1
Now by tracing backward, we get
1=26-5x5

=26-5x(31-1x26)=-bx31+6x26
=-bx31+6x(88-2x31)=6x88-17 x 31
=6x88-17x(911-10x88)=-17 x 911+ 176 x 88
=-17x911+176 x (999 -1x911) =176 x 999 - 193 x 911
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we how have
gcd(911,999) = 1= -193 x 911 + 176 x 999.

If we do a modular reduction of 999 to this equation, we have

1 (mod 999) = -193 x 911 + 176 x 999 (mod 999)

=1 =-193 x 911 mod 999
=1 = (-193 mod 999) x 911 mod 999
=1 = 806 x 911 mod 999

1=806x911 (mod 999).
Hence 806 is the modular inverse of 911 modulo 999.

Suppose 6CD(a,n)=1, Compute a~* mod n:
1

Compute x and y, such that ax + ny = gcd(a, n) ,then x Ymodnis a ! modn.
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The Euler phi Function

For n>1, ¢(n) denotes the number of integers in the interval [1, n]
which are relatively prime to n. The function ¢ is called the Euler phi
function (or the Euler totient function).

Fact 1. The Euler phi function is multiplicative. L.e. if gcd(m, n) = 1,
then ¢(mn) = ¢(m) x ¢(n).
Fact 2. For a prime p and an integer e > 1, ¢(p®) = p&(p-1).

* From these two facts, we can find ¢ for any composite n if the
prime factorization of n is known.

 Let n=p%1p,%2 .. pk where p;,..., p are prime and each e; is a
honzero positive integer.

» Then

o(n)=n(1-1/p) (1-1/p;) .. (1 - 1/py).

16




The Euler phi Function

p(n)=[{x:1<x<n and ged(x,n)=1}

- ¢(2)= {1} =1

- ¢(3)=1{1.,2}| =2

- ¢(4)= {13} =2
 o(5) = |{1,2,3.4}| = 4
- ¢(6) = {15} = 2

N O OSSN OSSN

- $(37) = 36
- 9(21) = (3-1)X(7-1)=2X6=12

)

)
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Fermat's Little Theorem

Let p be a prime. Any integer a not divisible by p
satisfies a”! =1 (mod p).

If a is not divisible by p and if n =m (mod p-1), then a" = a™
(mod p).

- We can generalize the Fermat's Little Theorem as follows. This is
due to Euler.

Euler's Generalization Let n be a composite. Then a¢" = 1
(mod n) for any integer a which is relatively prime to n.

+ E.g.a=3;n=10; ¢(10)=4 = 34 =81=1 (mod 10)
. Eg.a=2:n=11; o(11)=10 = 210 = 1024 = 1 (mod 11)
Exercise:  Compute 11973741823 nod 13,

For integer a and positive integer k, n, if a and n are co-prime,

then ak mod n = @ kmed ¢() mod n. 18




Modular Exponentiation

LetZ={..,-2,-1,0,1,2, .. } be the set of integers.
Leta,e,ne Z

Modular exponentiation a® mod n is defined as repeated
multiplications of a for e tfimes modulo n.
Method 1 : Repeated Modular Multiplication (as defined)

eg. 11®mod13 =11 x11x11x 11 x .. x 11 mod 13
=4 x11x11x .. x11 mod 13
=5 x11x..x11 mod 13

- 5
» performed 14 modular multiplications
- Complexity = O(e)
- Compute 11193741823 mod 1073741823
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Modular Exponentiation

Method 2 : Square-and-Multiply Algorithm

eg. 115 mod13=118x11*x112x 11 mod 13 — (1)
. 112 = 121 = 4 (mod 13) —(2)
. 114 = (112)° = 42 = 3 (mod 13) —(3)
+ 118 = (11)° = 32 = 9 (mod 13) — (4)

Put (2), (3) and (4) to (1) and get
11"=9x3 x4 x11=5 (mod 13)

- performed at most 2| log,15] modular multiplications
- Complexity = O(|e|) or O( Ig(e) )
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Modular Exponentiation
Pseudo-code of Square-and-Multiply Algorithm to
compute a® mod n :

Let the binary representation of e be (e, e;., ... € €p).
Hence t is the number of bits in the binary representation of e.

1. z=1

2. fori=1t-1downto O do

3. Z=2z2mod n

4, ife.=1thenz=zxamodn

21



Group Theory

very important in cryptography, especially in
public key cryptography
concern an operation on “a set of numbers”

22



Groups

* Let G be a nonempty set and o be a binary operation.
* A binary operation o on a set G is a mapping from GxG to G.
* i.e. o is a rule which assigns to each ordered pair of elements
from G to an element of G.

(6, 0) is agroup if the following conditions are satisfied:

1. closed: foranya,be G,aob e 6

2. associative :anya,b,c e 6,(aob)oc=ao(boc)

3. there exists an identity element e in G, such that for any a
G,aoe=-eoa=z=a.

4. For each a € G, there exists an inverse of a denoted by a’l,
such thataoal=e,

If o is also commutative, i.e. foranya,b € G,aob = b oq, then
(G, o) is an Abelian group.

23



Example 1

a set: {1,2,3,4} with operator * (mod 5)

obeys:
o close law

o associative law:
o Iidentity e=1:
(|

1 has
2 has
3 has
4 has

It is a group

It is commutative:

an
an
an
an

(a*b) *c = a* (b*c) (mod 5)

1*a = a*l = a
How about inverses a=1?

inverse

inverse:
inverse:
inverse:

(itself)

3 since 2*3=6=1 (mod b5)
2.

4 since 4*4=16=1 (mod 5)

a*b = b*a

Therefore, this multiplicative group is an Abelian Group

24



Example 2

a set: {0,1,2,3} with operator * (mod 4)
obeys:

o close law

0 associative law: (a*b) *c = a* (b*c) (mod 4)
o identity e=1: 1*a = a*l = a

o How about inverses a=1?

First of all, 0 has no inverse
1 has an inverse (itself)
3 has an inverse (i1itself) 3.3=9=1 (mod 4)

2 has no inverse

Cannot be a group

25



Example 3

a set: {1,2,3} with operator + (mod 5)
Is it a group?
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More on Multiplicative Groups

* For multiplication, not all Zn\{0} form (multiplicative) groups with
the identity element 1.

» It depends on the value of n.
* For example, Zg\{0} does not while Z7\{0} under multiplication
forms a group.

* Reason: Only those elements which are relatively prime to n have
multiplicative inverses. Hence Z,\{0} forms a multiplicative group
only when n is a prime.

- As an extension, the set Z,~ = {a € Zp | gcd(a,n)=1} forms a
multiplicative group for any positive integer n.

27



Cyclic Groups

* A group is cyclic if there is an element g € G such that for each
a € G, there is an integer i with a = g, that is g operates (e.g.
modular multiply) on itself for i times.

» g is called a generator or a primitive element of G.

» g is also said to be a primitive root of n.
- Example: (Z7™, x) is a cyclic multiplicative group with g=3.
Let n=7 and g=3.

| 123
gmod7 326
But not all the multiplicative groups of positive composite integers n
have generators (are cyclic).

Fact. Zn~ has a (at least one) generator if and only if n = 2, 4, pk, 2pk,
where p is an odd prime and k > 1.
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Example

Is the group {1,2,3,4; * (mod 5)} cyclic?

0o 0 0 o0 0 O

a

The identity is 1.

Let a=2

Recall that the notation: a3 = a.a.a
1=a’

al=2

a?=4 (mod 5)

a3 =2*2*2=8=3 (mod 5)

a*=16=1 (mod 5)

2 is a generator of the group
Therefore, the group is cyclic.
Ex: Is 3 (or 4) a generator of this group?
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