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Number Theory

We work on integers only



3

Divisors
Two integers: a and b (b is non-zero)

 b divides a if there exists some integer m such that a =
m·b

 Notation: b|a

 eg. 1,2,3,4,6,8,12,24 divide 24 

 b is a divisor of a 

Relations
1. If b|1  b = 1
2. If b|a and a|b  b = a

3. If b|0  any b  0
4. If b|g and b|h then b | (mg + nh) for any integers m and n.
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Congruence

a is congruent to b modulo n if n | a-b.

Notation: a  b (mod n)

Properties
1. a  a (mod n) 
2. a  b (mod n) implies b  a (mod n)
3. a  b (mod n) and b  c (mod n) imply a  c (mod n)

Examples
1. 23  8 (mod 5) because 5 | 23-8
2. -11  5 (mod 8) because 8 | -11-5
3. 81  0 (mod 27) because 27 | 81-0
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Modular Arithmetic
 modular reduction:  a mod n = r

r is the remainder when a is divided by a natural number n
 r is also called the residue of a mod n

 it can be represented as: a = qn + r where 0  r < n, q = a/n where 
x is the largest integer less than or equal to x

 q is called the quotient
 18 mod 7 = ?
 29345723547 mod 2 = ?
 Relation between modular reduction and congruence

 -12 ≡ -5 ≡ 2 ≡ 9 (mod 7)
 -12 mod 7 = 2  (what’s the quotient?)
 For any integers a, b and positive integer m, a  b (mod n) iff a mod n = b 

mod n. 
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Modular Arithmetic Operations

 can do modular reduction at any point,
 a + b mod n = [a mod n + b mod n] mod n
 E.g. 97 + 23 mod 7 = [97 mod 7 + 23 mod 7] mod 7 = [6 + 2] mod 7 = 1

 E.g. 11 – 14 mod 8 = -3 mod 8 = 5

 E.g. 11 x 14 mod 8 = 3 x 6 mod 8 = 2
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Modular Arithmetic

 Zn = {0, 1, … , n-1}
 If a+b ≡ a+c (mod n)

then b ≡ c (mod n)

 but if ab ≡ ac (mod n)

then b ≡ c (mod n) only if a is relatively prime to n
 n | ab – ac  n | a(b – c)

 E.g. 7 x 11  7 x 5 (mod 6)  11  5 (mod 6)

 9 x 3  9 x 5 (mod 6) but 3 !  5 (mod 6)
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Prime and Composite Numbers

• An integer p is prime if its only divisors are 1 and p only.
• Otherwise, it is a composite number.
• E.g. 2,3,5,7 are prime; 4,6,8,9,10 are not
• List of prime number less than 200: 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 
83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 
163 167 173 179 181 191 193 197 199

• Prime Factorization: If a is a composite number, then a can be 
factored in a unique way as

a = p1
1 p2

2 … pt
t

where p1 > p2 > … > pt are prime numbers and each i is a natural 
number (i.e. a positive nonzero integer).

e.g. 12,250 = 72  53  2
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Prime Factorization
• It is generally hard to do (prime) factorization when 

the number is large
• E.g. factorize

1. 24070280312179
2. 10893002480924910251
3. 93874093217498173983210748123487143249761
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Greatest Common Divisor (GCD)
 GCD (a,b) of a and b is the largest number that divides both a and b 

 E.g. GCD(60,24) = 12

 If GCD(a, b) = 1, then a and b are said to be relatively prime
 E.g. GCD(8,15) = 1
 8 and 15 are relatively prime (co-prime)

Question: How to compute gcd(a,b)?

Naive method: factorize a and b and compute the product of 
all their common factors.

e.g. 540 = 22 x 33 x 5
144 = 24 x 32

gcd(540, 144) = 22 x 32 = 36

Problem of this naive method: factorization becomes very difficult 
when integers become large.

Better method: Euclidean Algorithm (a.k.a. Euclid’s GCD algorithm)
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Euclidean Algorithm
Compute gcd(911, 999) :

Hence gcd(911, 999) = 1

Rationale
Theorem gcd(a, b) = gcd(b, a mod b)

Euclid's Algorithm: 
A=a, B=b
while B>0

R = A mod B
A = B, B = R

return A

999=911*1+88
911=88*10+31
88=31*2+26
31=26*1+5
26=5*5+1
5=1*5+0
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Euclidean Algorithm
Proof Sketch.
“” ( if d divides a and b then d also divides b mod a)

Suppose d|a and d|b.
For any positive integer a, b can be expressed in the form

b = qa + r  r (mod a) — (1)
 b mod a = b – qa — (2)
Since d|a, it also divides qa.
Hence from (2), we see that d | b mod a.

“” ( if d divides a and b mod a then d also divides b)
Similarly, if d|a and d|qa.
Thus d | (qa + (b mod a)),
which is equivalent to d | b.
Thus the sets of common divisors of a and b, and a and b mod a, are 
identical.

Hence gcd(911, 999) = gcd(911, 999 mod 911) = gcd(911 mod 88, 88)
= gcd(31, 88 mod 31) = gcd(31 mod 26, 26) = gcd(5, 26 mod 5)
= gcd(5, 1) = 1.
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Modular Inverse
A is the modular inverse of B mod n if AB mod n = 1.

A is denoted as B-1 mod n.

e.g.
•3 is the modular inverse of 5 mod 7. In other words, 5-1 mod 7 = 3.
•7 is the modular inverse of 7 mod 16. In other words, 7-1 mod 16 = 7.

However, there is no modular inverse for 8 mod 14.

There exists a modular inverse for B mod n iff B is relatively prime 
to n.

Question:
What’s the modular inverse of 911 mod 999?
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Extended Euclidean Algorithm
The extended Euclidean algorithm can be used to solve the integer 
equation

ax + by = gcd(a, b)
For any given integers a and b.
Example
Let a = 911 and b = 999. From the Euclidean algorithm,

999 = 1 x 911 + 88
911 = 10 x 88 + 31
88 = 2 x 31 + 26
31 = 1 x 26 + 5
26 = 5 x 5 + 1  gcd(a, b) =1

Now by tracing backward, we get
1 = 26 – 5 x 5

= 26 – 5 x (31 – 1 x 26) = -5 x 31 + 6 x 26
= -5 x 31 + 6 x (88 – 2 x 31) = 6 x 88 – 17 x 31
= 6 x 88 – 17 x (911 – 10 x 88) = -17 x 911 + 176 x 88
= -17 x 911 + 176 x (999 – 1 x 911) = 176 x 999 – 193 x 911
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gcd(911, 999) = 1 = -193 x 911 + 176 x 999.
If we do a modular reduction of 999 to this equation, we have

1 (mod 999) = -193 x 911 + 176 x 999 (mod 999)
1 = -193 x 911 mod 999
1 = (-193 mod 999) x 911 mod 999
1 = 806 x 911 mod 999

1  806 x 911 (mod 999).

we now have

Hence 806 is the modular inverse of 911 modulo 999.

Suppose GCD(a,n)=1, Compute ିଵ :
Compute then ିଵ is ିଵ .
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The Euler phi Function
For n  1, (n) denotes the number of integers in the interval [1, n] 
which are relatively prime to n. The function  is called the Euler phi 
function (or the Euler totient function).

Fact 1. The Euler phi function is multiplicative. I.e. if gcd(m, n) = 1, 
then (mn) = (m) x (n).
Fact 2. For a prime p and an integer e  1, (pe) = pe-1(p-1).

• From these two facts, we can find  for any composite n if the 
prime factorization of n is known.

• Let n = p1
e1 p2

e2 … pk
ek where p1,…, pk are prime and each ei is a 

nonzero positive integer.
• Then

(n) = n (1 - 1/p1) (1 - 1/p2) … (1 - 1/pk).



17

The Euler phi Function

• (2) = |{1}| = 1
• (3) =|{1,2}| = 2
• (4) = |{1,3}| = 2
• (5) = |{1,2,3,4}| = 4
• (6) = |{1,5}| = 2

• (37) = 36
• (21) = (3–1)×(7–1) = 2×6 = 12

}1),gcd(1:{)(  nxandnxxn
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Fermat’s Little Theorem

Let p be a prime. Any integer a not divisible by p
satisfies ap-1  1 (mod p).

• If a is not divisible by p and if n  m (mod p-1), then an  am

(mod p).

• We can generalize the Fermat’s Little Theorem as follows. This is 
due to Euler.
Euler’s Generalization Let n be a composite. Then a(n)  1 
(mod n) for any integer a which is relatively prime to n.

• E.g. a=3;n=10; (10)=4  34  81  1 (mod 10)
• E.g. a=2;n=11; (11)=10  210  1024  1 (mod 11)

Exercise: Compute 111,073,741,823 mod 13.

For integer a and positive integer k, n, if a and n are co-prime, 
then ak mod n = a k mod (n) mod n.
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Modular Exponentiation

Let Z = { …, -2, -1, 0, 1, 2, … } be the set of integers.
Let a, e, n  Z.

Modular exponentiation ae mod n is defined as repeated 
multiplications of a for e times modulo n.

Method 1 : Repeated Modular Multiplication (as defined)
e.g.  1115 mod 13 = 11 x 11 x 11 x 11 x … x 11 mod 13

= 4 x 11 x 11 x … x 11 mod 13
= 5 x 11 x … x 11 mod 13
:
= 5

• performed 14 modular multiplications
• Complexity = O(e)
• Compute 11103741,823 mod 1073741823
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Modular Exponentiation

Method 2 : Square-and-Multiply Algorithm
e.g.  1115 mod 13 = 118 x 114 x 112 x 11 mod 13 — (1)

• 112 = 121  4 (mod 13) — (2)
• 114 = (112)2  42  3 (mod 13) — (3)
• 118 = (114)2  32  9 (mod 13) — (4)

Put (2), (3) and (4) to (1) and get
1115  9 x 3 x 4 x 11  5 (mod 13)

• performed at most 2log215 modular multiplications
• Complexity = O(|e|) or O( lg(e) )
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Modular Exponentiation

Pseudo-code of Square-and-Multiply Algorithm to 
compute ae mod n :

Let the binary representation of e be (et-1 et-2 … e1 e0).
Hence t is the number of bits in the binary representation of e.

1. z = 1
2. for i = t-1 downto 0 do
3. z = z2 mod n
4. if ei = 1 then z = z x a mod n
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Group Theory

 very important in cryptography, especially in 
public key cryptography

 concern an operation on “a set of numbers”
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Groups
• Let G be a nonempty set and º be a binary operation.
• A binary operation º on a set G is a mapping from GxG to G.

• i.e. º is a rule which assigns to each ordered pair of elements 
from G to an element of G.

(G, º) is a group if the following conditions are satisfied:
1. closed : for any a, b  G, a º b  G
2. associative : any a, b, c  G, (a º b) º c = a º (b º c)
3. there exists an identity element e in G, such that for any a 

G, a º e = e º a = a.
4. For each a  G, there exists an inverse of a denoted by a-1, 

such that a º a-1 = e.

If º is also commutative, i.e. for any a, b  G, a º b = b º a, then 
(G, º) is an Abelian group.
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Example 1

 a set: {1,2,3,4} with operator * (mod 5)

 obeys:
 close law
 associative law: (a*b)*c = a*(b*c) (mod 5)
 identity e=1:  1*a = a*1 = a
 How about inverses a-1?

 1 has an inverse (itself)
 2 has an inverse: 3 since 2*3=6=1 (mod 5)
 3 has an inverse: 2.
 4 has an inverse: 4 since 4*4=16=1 (mod 5)

 It is a group
 It is commutative: a*b = b*a
 Therefore, this multiplicative group is an Abelian Group
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Example 2

 a set: {0,1,2,3} with operator * (mod 4)

 obeys:
 close law
 associative law:(a*b)*c = a*(b*c) (mod 4)

 identity e=1:  1*a = a*1 = a

 How about inverses a-1?
 First of all, 0 has no inverse

 1 has an inverse (itself)

 3 has an inverse (itself) 3.3=9=1 (mod 4) 

 2 has no inverse

 Cannot be a group
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Example 3

 a set: {1,2,3} with operator + (mod 5)
 Is it a group?
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More on Multiplicative Groups
• For multiplication, not all Zn\{0} form (multiplicative) groups with 

the identity element 1.
• It depends on the value of n.
• For example, Z8\{0} does not while Z7\{0} under multiplication 

forms a group.
• Reason: Only those elements which are relatively prime to n have 

multiplicative inverses. Hence Zn\{0} forms a multiplicative group 
only when n is a prime.

• As an extension, the set Zn* = {a  Zn | gcd(a,n)=1 } forms a 
multiplicative group for any positive integer n.
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Cyclic Groups
• A group is cyclic if there is an element g  G such that for each     

a  G, there is an integer i with a = gi, that is g operates (e.g. 
modular multiply) on itself for i times.

• g is called a generator or a primitive element of G.
• g is also said to be a primitive root of n.

• Example: (Z7*, x) is a cyclic multiplicative group with g=3.
Let n=7 and g=3.

i 1 2 3 4 5 6
gi mod 7 3 2 6 4 5 1

But not all the multiplicative groups of positive composite integers n 
have generators (are cyclic).

Fact. Zn* has a (at least one) generator if and only if n = 2, 4, pk, 2pk, 
where p is an odd prime and k  1.
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Example
 Is the group {1,2,3,4; * (mod 5)} cyclic?

 The identity is 1.
 Let a=2
 Recall that the notation: a3 = a.a.a
 1= a0

 a1=2 
 a2= 4 (mod 5) 
 a3 =2*2*2=8=3 (mod 5) 
 a4 =16=1 (mod 5) 

 2 is a generator of the group
 Therefore, the group is cyclic.
 Ex: Is 3 (or 4) a generator of this group?


