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Number Theory

We work on integers only
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Divisors
Two integers: a and b (b is non-zero)

 b divides a if there exists some integer m such that a =
m·b

 Notation: b|a

 eg. 1,2,3,4,6,8,12,24 divide 24 

 b is a divisor of a 

Relations
1. If b|1  b = 1
2. If b|a and a|b  b = a

3. If b|0  any b  0
4. If b|g and b|h then b | (mg + nh) for any integers m and n.
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Congruence

a is congruent to b modulo n if n | a-b.

Notation: a  b (mod n)

Properties
1. a  a (mod n) 
2. a  b (mod n) implies b  a (mod n)
3. a  b (mod n) and b  c (mod n) imply a  c (mod n)

Examples
1. 23  8 (mod 5) because 5 | 23-8
2. -11  5 (mod 8) because 8 | -11-5
3. 81  0 (mod 27) because 27 | 81-0
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Modular Arithmetic
 modular reduction:  a mod n = r

r is the remainder when a is divided by a natural number n
 r is also called the residue of a mod n

 it can be represented as: a = qn + r where 0  r < n, q = a/n where 
x is the largest integer less than or equal to x

 q is called the quotient
 18 mod 7 = ?
 29345723547 mod 2 = ?
 Relation between modular reduction and congruence

 -12 ≡ -5 ≡ 2 ≡ 9 (mod 7)
 -12 mod 7 = 2  (what’s the quotient?)
 For any integers a, b and positive integer m, a  b (mod n) iff a mod n = b 

mod n. 
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Modular Arithmetic Operations

 can do modular reduction at any point,
 a + b mod n = [a mod n + b mod n] mod n
 E.g. 97 + 23 mod 7 = [97 mod 7 + 23 mod 7] mod 7 = [6 + 2] mod 7 = 1

 E.g. 11 – 14 mod 8 = -3 mod 8 = 5

 E.g. 11 x 14 mod 8 = 3 x 6 mod 8 = 2
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Modular Arithmetic

 Zn = {0, 1, … , n-1}
 If a+b ≡ a+c (mod n)

then b ≡ c (mod n)

 but if ab ≡ ac (mod n)

then b ≡ c (mod n) only if a is relatively prime to n
 n | ab – ac  n | a(b – c)

 E.g. 7 x 11  7 x 5 (mod 6)  11  5 (mod 6)

 9 x 3  9 x 5 (mod 6) but 3 !  5 (mod 6)
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Prime and Composite Numbers

• An integer p is prime if its only divisors are 1 and p only.
• Otherwise, it is a composite number.
• E.g. 2,3,5,7 are prime; 4,6,8,9,10 are not
• List of prime number less than 200: 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 
83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 
163 167 173 179 181 191 193 197 199

• Prime Factorization: If a is a composite number, then a can be 
factored in a unique way as

a = p1
1 p2

2 … pt
t

where p1 > p2 > … > pt are prime numbers and each i is a natural 
number (i.e. a positive nonzero integer).

e.g. 12,250 = 72  53  2
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Prime Factorization
• It is generally hard to do (prime) factorization when 

the number is large
• E.g. factorize

1. 24070280312179
2. 10893002480924910251
3. 93874093217498173983210748123487143249761
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Greatest Common Divisor (GCD)
 GCD (a,b) of a and b is the largest number that divides both a and b 

 E.g. GCD(60,24) = 12

 If GCD(a, b) = 1, then a and b are said to be relatively prime
 E.g. GCD(8,15) = 1
 8 and 15 are relatively prime (co-prime)

Question: How to compute gcd(a,b)?

Naive method: factorize a and b and compute the product of 
all their common factors.

e.g. 540 = 22 x 33 x 5
144 = 24 x 32

gcd(540, 144) = 22 x 32 = 36

Problem of this naive method: factorization becomes very difficult 
when integers become large.

Better method: Euclidean Algorithm (a.k.a. Euclid’s GCD algorithm)
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Euclidean Algorithm
Compute gcd(911, 999) :

Hence gcd(911, 999) = 1

Rationale
Theorem gcd(a, b) = gcd(b, a mod b)

Euclid's Algorithm: 
A=a, B=b
while B>0

R = A mod B
A = B, B = R

return A

999=911*1+88
911=88*10+31
88=31*2+26
31=26*1+5
26=5*5+1
5=1*5+0
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Euclidean Algorithm
Proof Sketch.
“” ( if d divides a and b then d also divides b mod a)

Suppose d|a and d|b.
For any positive integer a, b can be expressed in the form

b = qa + r  r (mod a) — (1)
 b mod a = b – qa — (2)
Since d|a, it also divides qa.
Hence from (2), we see that d | b mod a.

“” ( if d divides a and b mod a then d also divides b)
Similarly, if d|a and d|qa.
Thus d | (qa + (b mod a)),
which is equivalent to d | b.
Thus the sets of common divisors of a and b, and a and b mod a, are 
identical.

Hence gcd(911, 999) = gcd(911, 999 mod 911) = gcd(911 mod 88, 88)
= gcd(31, 88 mod 31) = gcd(31 mod 26, 26) = gcd(5, 26 mod 5)
= gcd(5, 1) = 1.
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Modular Inverse
A is the modular inverse of B mod n if AB mod n = 1.

A is denoted as B-1 mod n.

e.g.
•3 is the modular inverse of 5 mod 7. In other words, 5-1 mod 7 = 3.
•7 is the modular inverse of 7 mod 16. In other words, 7-1 mod 16 = 7.

However, there is no modular inverse for 8 mod 14.

There exists a modular inverse for B mod n iff B is relatively prime 
to n.

Question:
What’s the modular inverse of 911 mod 999?
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Extended Euclidean Algorithm
The extended Euclidean algorithm can be used to solve the integer 
equation

ax + by = gcd(a, b)
For any given integers a and b.
Example
Let a = 911 and b = 999. From the Euclidean algorithm,

999 = 1 x 911 + 88
911 = 10 x 88 + 31
88 = 2 x 31 + 26
31 = 1 x 26 + 5
26 = 5 x 5 + 1  gcd(a, b) =1

Now by tracing backward, we get
1 = 26 – 5 x 5

= 26 – 5 x (31 – 1 x 26) = -5 x 31 + 6 x 26
= -5 x 31 + 6 x (88 – 2 x 31) = 6 x 88 – 17 x 31
= 6 x 88 – 17 x (911 – 10 x 88) = -17 x 911 + 176 x 88
= -17 x 911 + 176 x (999 – 1 x 911) = 176 x 999 – 193 x 911
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gcd(911, 999) = 1 = -193 x 911 + 176 x 999.
If we do a modular reduction of 999 to this equation, we have

1 (mod 999) = -193 x 911 + 176 x 999 (mod 999)
1 = -193 x 911 mod 999
1 = (-193 mod 999) x 911 mod 999
1 = 806 x 911 mod 999

1  806 x 911 (mod 999).

we now have

Hence 806 is the modular inverse of 911 modulo 999.

Suppose GCD(a,n)=1, Compute ିଵ :
Compute then ିଵ is ିଵ .
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The Euler phi Function
For n  1, (n) denotes the number of integers in the interval [1, n] 
which are relatively prime to n. The function  is called the Euler phi 
function (or the Euler totient function).

Fact 1. The Euler phi function is multiplicative. I.e. if gcd(m, n) = 1, 
then (mn) = (m) x (n).
Fact 2. For a prime p and an integer e  1, (pe) = pe-1(p-1).

• From these two facts, we can find  for any composite n if the 
prime factorization of n is known.

• Let n = p1
e1 p2

e2 … pk
ek where p1,…, pk are prime and each ei is a 

nonzero positive integer.
• Then

(n) = n (1 - 1/p1) (1 - 1/p2) … (1 - 1/pk).
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The Euler phi Function

• (2) = |{1}| = 1
• (3) =|{1,2}| = 2
• (4) = |{1,3}| = 2
• (5) = |{1,2,3,4}| = 4
• (6) = |{1,5}| = 2

• (37) = 36
• (21) = (3–1)×(7–1) = 2×6 = 12

}1),gcd(1:{)(  nxandnxxn
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Fermat’s Little Theorem

Let p be a prime. Any integer a not divisible by p
satisfies ap-1  1 (mod p).

• If a is not divisible by p and if n  m (mod p-1), then an  am

(mod p).

• We can generalize the Fermat’s Little Theorem as follows. This is 
due to Euler.
Euler’s Generalization Let n be a composite. Then a(n)  1 
(mod n) for any integer a which is relatively prime to n.

• E.g. a=3;n=10; (10)=4  34  81  1 (mod 10)
• E.g. a=2;n=11; (11)=10  210  1024  1 (mod 11)

Exercise: Compute 111,073,741,823 mod 13.

For integer a and positive integer k, n, if a and n are co-prime, 
then ak mod n = a k mod (n) mod n.
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Modular Exponentiation

Let Z = { …, -2, -1, 0, 1, 2, … } be the set of integers.
Let a, e, n  Z.

Modular exponentiation ae mod n is defined as repeated 
multiplications of a for e times modulo n.

Method 1 : Repeated Modular Multiplication (as defined)
e.g.  1115 mod 13 = 11 x 11 x 11 x 11 x … x 11 mod 13

= 4 x 11 x 11 x … x 11 mod 13
= 5 x 11 x … x 11 mod 13
:
= 5

• performed 14 modular multiplications
• Complexity = O(e)
• Compute 11103741,823 mod 1073741823
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Modular Exponentiation

Method 2 : Square-and-Multiply Algorithm
e.g.  1115 mod 13 = 118 x 114 x 112 x 11 mod 13 — (1)

• 112 = 121  4 (mod 13) — (2)
• 114 = (112)2  42  3 (mod 13) — (3)
• 118 = (114)2  32  9 (mod 13) — (4)

Put (2), (3) and (4) to (1) and get
1115  9 x 3 x 4 x 11  5 (mod 13)

• performed at most 2log215 modular multiplications
• Complexity = O(|e|) or O( lg(e) )



21

Modular Exponentiation

Pseudo-code of Square-and-Multiply Algorithm to 
compute ae mod n :

Let the binary representation of e be (et-1 et-2 … e1 e0).
Hence t is the number of bits in the binary representation of e.

1. z = 1
2. for i = t-1 downto 0 do
3. z = z2 mod n
4. if ei = 1 then z = z x a mod n



22

Group Theory

 very important in cryptography, especially in 
public key cryptography

 concern an operation on “a set of numbers”
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Groups
• Let G be a nonempty set and º be a binary operation.
• A binary operation º on a set G is a mapping from GxG to G.

• i.e. º is a rule which assigns to each ordered pair of elements 
from G to an element of G.

(G, º) is a group if the following conditions are satisfied:
1. closed : for any a, b  G, a º b  G
2. associative : any a, b, c  G, (a º b) º c = a º (b º c)
3. there exists an identity element e in G, such that for any a 

G, a º e = e º a = a.
4. For each a  G, there exists an inverse of a denoted by a-1, 

such that a º a-1 = e.

If º is also commutative, i.e. for any a, b  G, a º b = b º a, then 
(G, º) is an Abelian group.
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Example 1

 a set: {1,2,3,4} with operator * (mod 5)

 obeys:
 close law
 associative law: (a*b)*c = a*(b*c) (mod 5)
 identity e=1:  1*a = a*1 = a
 How about inverses a-1?

 1 has an inverse (itself)
 2 has an inverse: 3 since 2*3=6=1 (mod 5)
 3 has an inverse: 2.
 4 has an inverse: 4 since 4*4=16=1 (mod 5)

 It is a group
 It is commutative: a*b = b*a
 Therefore, this multiplicative group is an Abelian Group
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Example 2

 a set: {0,1,2,3} with operator * (mod 4)

 obeys:
 close law
 associative law:(a*b)*c = a*(b*c) (mod 4)

 identity e=1:  1*a = a*1 = a

 How about inverses a-1?
 First of all, 0 has no inverse

 1 has an inverse (itself)

 3 has an inverse (itself) 3.3=9=1 (mod 4) 

 2 has no inverse

 Cannot be a group
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Example 3

 a set: {1,2,3} with operator + (mod 5)
 Is it a group?
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More on Multiplicative Groups
• For multiplication, not all Zn\{0} form (multiplicative) groups with 

the identity element 1.
• It depends on the value of n.
• For example, Z8\{0} does not while Z7\{0} under multiplication 

forms a group.
• Reason: Only those elements which are relatively prime to n have 

multiplicative inverses. Hence Zn\{0} forms a multiplicative group 
only when n is a prime.

• As an extension, the set Zn* = {a  Zn | gcd(a,n)=1 } forms a 
multiplicative group for any positive integer n.
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Cyclic Groups
• A group is cyclic if there is an element g  G such that for each     

a  G, there is an integer i with a = gi, that is g operates (e.g. 
modular multiply) on itself for i times.

• g is called a generator or a primitive element of G.
• g is also said to be a primitive root of n.

• Example: (Z7*, x) is a cyclic multiplicative group with g=3.
Let n=7 and g=3.

i 1 2 3 4 5 6
gi mod 7 3 2 6 4 5 1

But not all the multiplicative groups of positive composite integers n 
have generators (are cyclic).

Fact. Zn* has a (at least one) generator if and only if n = 2, 4, pk, 2pk, 
where p is an odd prime and k  1.
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Example
 Is the group {1,2,3,4; * (mod 5)} cyclic?

 The identity is 1.
 Let a=2
 Recall that the notation: a3 = a.a.a
 1= a0

 a1=2 
 a2= 4 (mod 5) 
 a3 =2*2*2=8=3 (mod 5) 
 a4 =16=1 (mod 5) 

 2 is a generator of the group
 Therefore, the group is cyclic.
 Ex: Is 3 (or 4) a generator of this group?


