

刘振

上海交通大学 计算机科学与工程系
电信群楼3－509
liuzhen＠sjtu．edu．cn

Number Theory

We work on integers only

Divisors

Two integers: a and b (b is non-zero)

- b divides a if there exists some integer m such that $\mathrm{a}=$ $\mathrm{m} \cdot \mathrm{b}$
- Notation: b|a
- eg. 1,2,3,4,6,8,12,24 divide 24
- b is a divisor of a

Relations

1. If $b \mid 1 \quad \Rightarrow b= \pm 1$
2. If $b \mid a$ and $a \mid b \Rightarrow b= \pm a$
3. If $b \mid 0 \quad \Rightarrow$ any $b \neq 0$
4. If $b \mid g$ and $b \mid h$ then $b \mid(m g+n h)$ for any integers m and n.

Congruence

a is congruent to b modulo n if $n \mid a-b$.
Notation: $a \equiv b(\bmod n)$

Examples

1. $23 \equiv 8(\bmod 5) \quad$ because $5 \mid 23-8$
2. $-11 \equiv 5(\bmod 8)$ because $8 \mid-11-5$
3. $81 \equiv 0(\bmod 27) \quad$ because $27 \mid 81-0$

Properties

1. $a \equiv a(\bmod n)$
2. $a \equiv b(\bmod n)$ implies $b \equiv a(\bmod n)$
3. $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ imply $a \equiv c(\bmod n)$

Modular Arithmetic

- modular reduction: a mod $n=r$
r is the remainder when a is divided by a natural number n
- r is also called the residue of a mod n
- it can be represented as: $a=q n+r$ where $\mathbf{0} \leq r<n, q=\lfloor a / n\rfloor$ where $\lfloor x\rfloor$ is the largest integer less than or equal to x
- q is called the quotient
- $18 \bmod 7=$?
- $29345723547 \bmod 2=$?
- Relation between modular reduction and congruence
- $-12 \equiv-5 \equiv 2 \equiv 9(\bmod 7)$
- $-12 \bmod 7=2$ (what's the quotient?)
- For any integers a, b and positive integer $m, a \equiv b(\bmod n)$ iff $a \bmod n=b$ mod n.

Modular Arithmetic Operations

- can do modular reduction at any point,
a $a+b \bmod n=[a \bmod n+b \bmod n] \bmod n$
- E.g. $97+23 \bmod 7=[97 \bmod 7+23 \bmod 7] \bmod 7=[6+2] \bmod 7=1$
- E.g. $11-14 \bmod 8=-3 \bmod 8=5$
- E.g. $11 \times 14 \bmod 8=3 \times 6 \bmod 8=2$

Modular Arithmetic

$-Z_{n}=\{0,1, \ldots, n-1\}$

- If $a+b \equiv a+c(\bmod n)$
then $b \equiv c(\bmod n)$
- but if $a b \equiv a c(\bmod n)$ then $b \equiv c(\bmod n)$ only if a is relatively prime to n
- $\mathrm{n}|\mathrm{ab}-\mathrm{ac} \Rightarrow \mathrm{n}| \mathrm{a}(\mathrm{b}-\mathrm{c})$
- E.g. $7 \times 11 \equiv 7 \times 5(\bmod 6) \quad \Rightarrow 11 \equiv 5(\bmod 6)$
- $\quad 9 \times 3 \equiv 9 \times 5(\bmod 6) \quad$ but $3!\equiv 5(\bmod 6)$

Prime and Composite Numbers

- An integer p is prime if its only divisors are ± 1 and $\pm p$ only.
- Otherwise, it is a composite number.
- E.g. 2,3,5,7 are prime; 4,6,8,9,10 are not
- List of prime number less than 200:

```
2 357111317192329 31 3741434753596167717379
8389 97101103107109113127131137139149151 157
163167173179181191193197199
```

- Prime Factorization: If a is a composite number, then a can be factored in a unique way as

$$
a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{\dagger}^{\alpha_{\dagger}}
$$

where $p_{1}>p_{2}>\ldots>p_{\dagger}$ are prime numbers and each α_{i} is a natural number (i.e. a positive nonzero integer).
e.g. $12,250=7^{2} \cdot 5^{3} \cdot 2$

Prime Factorization

- It is generally hard to do (prime) factorization when the number is large
- E.g. factorize

1. 24070280312179
2. 10893002480924910251
3. 93874093217498173983210748123487143249761

Greatest Common Divisor (GCD)

- GCD (a, b) of a and b is the largest number that divides both a and b
- E.g. $\operatorname{GCD}(60,24)=12$
- If $\operatorname{GCD}(a, b)=1$, then a and b are said to be relatively prime
- E.g. $\operatorname{GCD}(8,15)=1$
- 8 and 15 are relatively prime (co-prime)

Question: How to compute gcd(a, b)?
Naive method: factorize a and b and compute the product of all their common factors.
e.g. $540=2^{2} \times 3^{3} \times 5$
$144=2^{4} \times 3^{2}$
$\operatorname{gcd}(540,144)=2^{2} \times 3^{2}=36$
Problem of this naive method: factorization becomes very difficult when integers become large.
Better method: Euclidean Algorithm (a.k.a. Euclid's GCD algorithm)

Euclidean Algorithm

Compute gcd $(911,999)$:

$$
\begin{aligned}
& 999=911 * 1+88 \\
& 911=88 * 10+31 \\
& 88=31 * 2+26 \\
& 31=26 * 1+5 \\
& 26=5 * 5+1 \\
& 5=1 * 5+0
\end{aligned}
$$

```
Euclid's Algorithm:
    \(A=a, B=b\)
    while \(B>0\)
        \(R=A \bmod B\)
        \(A=B, B=R\)
    return \(A\)
```

Hence $\operatorname{gcd}(911,999)=1$

Rationale

Theorem $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

Euclidean Algorithm

Proof Sketch.
" \Rightarrow " (if d divides a and b then d also divides $b \bmod a$)
Suppose dla and d|b.
For any positive integer a, b can be expressed in the form
$b=q a+r \equiv r(\bmod a)$
$\Rightarrow \quad b \bmod a=b-q a$
Since $d \mid a$, it also divides qa. Hence from (2), we see that $d \mid b \bmod a$.
" \Leftarrow " (if d divides a and b mod a then d also divides b)
Similarly, if dla and dlqa.
Thus $d \mid(q a+(b \bmod a))$,
which is equivalent to $d \mid b$.
Thus the sets of common divisors of a and b, and a and b mod a, are identical.
Hence $\operatorname{gcd}(911,999)=\operatorname{gcd}(911,999 \bmod 911)=\operatorname{gcd}(911 \bmod 88,88)$
$=\operatorname{gcd}(31,88 \bmod 31)=\operatorname{gcd}(31 \bmod 26,26)=\operatorname{gcd}(5,26 \bmod 5)$
$=\operatorname{gcd}(5,1)=1$.

Modular Inverse

A is the modular inverse of $B \bmod n$ if $A B \bmod n=1$.
A is denoted as $B^{-1} \bmod n$.
e.g.
$\cdot 3$ is the modular inverse of $5 \bmod 7$. In other words $5^{-1} \bmod 7=3$.
$\cdot 7$ is the modular inverse of 7 mod 16 . In other words $7^{-1} \bmod 16=7$.
However, there is no modular inverse for $8 \bmod 14$.
There exists a modular inverse for $B \bmod n$ iff B is relatively prime to n.

Question:
What's the modular inverse of 911 mod 999?

Extended Euclidean Algorithm

The extended Euclidean algorithm can be used to solve the integer equation

$$
a x+b y=\operatorname{gcd}(a, b)
$$

For any given integers a and b.

Example

Let $a=911$ and $b=999$. From the Euclidean algorithm,

$$
999=1 \times 911+88
$$

$$
911=10 \times 88+31
$$

$$
88=2 \times 31+26
$$

$$
31=1 \times 26+5
$$

$$
26=5 \times 5+1 \quad \Rightarrow \operatorname{gcd}(a, b)=1
$$

Now by tracing backward, we get

$$
\begin{aligned}
1 & =26-5 \times 5 \\
& =26-5 \times(31-1 \times 26)=-5 \times 31+6 \times 26 \\
& =-5 \times 31+6 \times(88-2 \times 31)=6 \times 88-17 \times 31 \\
& =6 \times 88-17 \times(911-10 \times 88)=-17 \times 911+176 \times 88 \\
& =-17 \times 911+176 \times(999-1 \times 911)=176 \times 999-193 \times 911
\end{aligned}
$$

we now have

$$
\operatorname{gcd}(911,999)=1=-193 \times 911+176 \times 999 .
$$

If we do a modular reduction of 999 to this equation, we have
$1(\bmod 999)=-193 \times 911+176 \times 999(\bmod 999)$
$\Rightarrow 1=-193 \times 911 \bmod 999$
$\Rightarrow 1=(-193 \bmod 999) \times 911 \bmod 999$
$\Rightarrow 1=806 \times 911 \bmod 999$

$1 \equiv 806 \times 911$ (mod 999).

Hence 806 is the modular inverse of 911 modulo 999.
Suppose GCD $(a, n)=1$, Compute $a^{-1} \bmod n$:
Compute x and y, such that $a x+n y=\operatorname{gcd}(a, n)$, then $x^{-1} \bmod n$ is $a^{-1} \bmod n$.

The Euler phi Function

For $n \geq 1, \phi(n)$ denotes the number of integers in the interval $[1, n]$ which are relatively prime to n. The function ϕ is called the Euler phi function (or the Euler totient function).

Fact 1. The Euler phi function is multiplicative. I.e. if $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \times \phi(n)$.

Fact 2. For a prime p and an integer $e \geq 1, \phi\left(p^{e}\right)=p^{e-1}(p-1)$.

- From these two facts, we can find ϕ for any composite n if the prime factorization of n is known.
- Let $n=p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \ldots p_{k}{ }^{e_{k}}$ where p_{1}, \ldots, p_{k} are prime and each e_{i} is a nonzero positive integer.
- Then

$$
\phi(n)=n\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \ldots\left(1-1 / p_{k}\right) .
$$

The Euler phi Function

$$
\phi(n)=\mid\{x: 1 \leq x \leq n \quad \text { and } \quad \operatorname{gcd}(x, n)=1\} \mid
$$

- $\phi(2)=|\{1\}|=1$
- $\phi(3)=|\{1,2\}|=2$
- $\phi(4)=|\{1,3\}|=2$
- $\phi(5)=|\{1,2,3,4\}|=4$
- $\phi(6)=|\{1,5\}|=2$
- $\phi(37)=36$
- $\phi(21)=(3-1) \times(7-1)=2 \times 6=12$

Fermat's Little Theorem

Let p be a prime. Any integer a not divisible by p satisfies $a^{p-1} \equiv 1(\bmod p)$.

- If a is not divisible by p and if $n \equiv m(\bmod p-1)$, then $a^{n} \equiv a^{m}$ $(\bmod p)$.
- We can generalize the Fermat's Little Theorem as follows. This is due to Euler.
Euler's Generalization Let n be a composite. Then $a^{\phi(n)} \equiv 1$ $(\bmod n)$ for any integer a which is relatively prime to n.
- E.g. $a=3 ; n=10 ; \varphi(10)=4 \Rightarrow 3^{4} \equiv 81 \equiv 1(\bmod 10)$
- E.g. $a=2 ; n=11 ; \varphi(11)=10 \Rightarrow 2^{10} \equiv 1024 \equiv 1(\bmod 11)$

Exercise: Compute $11^{1,073,741,823} \bmod 13$.
For integer a and positive integer k, n, if a and n are co-prime, then $a^{k} \bmod n=a^{k \bmod \phi(n)} \bmod n$.

Modular Exponentiation

Let $Z=\{\ldots,-2,-1,0,1,2, \ldots\}$ be the set of integers.
Let $a, e, n \in Z$.
Modular exponentiation $a^{e} \bmod n$ is defined as repeated multiplications of a for e times modulo n.

Method 1 : Repeated Modular Multiplication (as defined)
e.g. $11^{15} \bmod 13=\underline{11 \times 11 \times 11 \times 11 \times \ldots \times 11 \bmod 13}$
$=4 \times 11 \times 11 \times \ldots \times 11 \bmod 13$
$=5 \times 11 \times \ldots \times 11 \bmod 13$
:
$=5$

- performed 14 modular multiplications
- Complexity $=0(e)$
- Compute $11^{103741,823} \bmod 1073741823$

Modular Exponentiation

Method 2 : Square-and-Multiply Algorithm
e.g. $11^{15} \bmod 13=11^{8} \times 11^{4} \times 11^{2} \times 11 \bmod 13 \quad-(1)$

- $11^{2}=121 \equiv 4(\bmod 13)$
-(2)
- $11^{4}=\left(11^{2}\right)^{2} \equiv 4^{2} \equiv 3(\bmod 13)$
- $11^{8}=\left(11^{4}\right)^{2} \equiv 3^{2} \equiv 9(\bmod 13)$

Put (2), (3) and (4) to (1) and get $11^{15} \equiv 9 \times 3 \times 4 \times 11 \equiv 5(\bmod 13)$

- performed at most $2\left\lfloor\log _{2} 15\right\rfloor$ modular multiplications
- Complexity $=O(|e|)$ or $O(\lg (e))$

Modular Exponentiation

Pseudo-code of Square-and-Multiply Algorithm to compute $a^{e} \bmod n$:

Let the binary representation of e be $\left(e_{t-1} e_{t-2} \ldots e_{1} e_{0}\right)$. Hence t is the number of bits in the binary representation of e.

$$
\begin{array}{|l}
\text { 1. } z=1 \\
\text { 2. for } i=t-1 \text { downto } 0 \text { do } \\
\text { 3. } z=z^{2} \bmod n \\
\text { 4. } \quad \text { if } e_{i}=1 \text { then } z=z \times a \bmod n \\
\hline
\end{array}
$$

Group Theory

- very important in cryptography, especially in public key cryptography
- concern an operation on "a set of numbers"

Groups

- Let G be a nonempty set and o be a binary operation.
- A binary operation o on a set G is a mapping from $G \times G$ to G.
- i.e. o is a rule which assigns to each ordered pair of elements from G to an element of G.
$(G, 0)$ is a group if the following conditions are satisfied:

1. closed : for any $a, b \in G, a \circ b \in G$
2. associative : any $a, b, c \in G,(a \circ b) \circ c=a \circ(b \circ c)$
3. there exists an identity element e in G, such that for any $a \in$ $G, a \circ e=e \circ a=a$.
4. For each $a \in G$, there exists an inverse of a denoted by a^{-1}, such that $a \circ a^{-1}=e$.

If \circ is also commutative, i.e. for any $a, b \in G, a \circ b=b \circ a$, then $(G, 0)$ is an Abelian group.

Example 1

- a set: $\{1,2,3,4\}$ with operator * $(\bmod 5)$
- obeys:
- close law
a associative law: $(a * b) * c=a *(b * c)(\bmod 5)$
- identity $e=1$: $\quad 1 * a=a * 1=a$
- How about inverses a^{-1} ?
- 1 has an inverse (itself)
- 2 has an inverse: 3 since $2 * 3=6=1(\bmod 5)$
- 3 has an inverse: 2.
- 4 has an inverse: 4 since $4 * 4=16=1(\bmod 5)$
- It is a group
- It is commutative: $a * b=b * a$
- Therefore, this multiplicative group is an Abelian Group

Example 2

- a set: $\{0,1,2,3\}$ with operator * (mod 4$)$
- obeys:
- close law
a associative law: $(a * b){ }^{*} c=a *(b * c)(m o d 4)$
- identity e=1: $1 * a=a * 1=a$
- How about inverses a^{-1} ?
- First of all, 0 has no inverse
- 1 has an inverse (itself)
- 3 has an inverse (itself) $3.3=9=1(\bmod 4)$
- 2 has no inverse
- Cannot be a group

Example 3

- a set: $\{1,2,3\}$ with operator $+(\bmod 5)$
- Is it a group?

More on Multiplicative Groups

- For multiplication, not all $Z_{n} \backslash\{0\}$ form (multiplicative) groups with the identity element 1.
- It depends on the value of n.
- For example, $Z_{8} \backslash\{0\}$ does not while $Z_{7} \backslash\{0\}$ under multiplication forms a group.
- Reason: Only those elements which are relatively prime to n have multiplicative inverses. Hence $Z_{n} \backslash\{0\}$ forms a multiplicative group only when n is a prime.
- As an extension, the $\operatorname{set} Z_{n}{ }^{*}=\left\{a \in Z_{n} \mid \operatorname{gcd}(a, n)=1\right\}$ forms a multiplicative group for any positive integer n.

Cyclic Groups

- A group is cyclic if there is an element $g \in G$ such that for each $a \in G$, there is an integer i with $a=g^{i}$, that is g operates (e.g. modular multiply) on itself for i times.
- g is called a generator or a primitive element of G.
- g is also said to be a primitive root of n.
- Example: $\left(Z_{7}{ }^{\star}, x\right)$ is a cyclic multiplicative group with $g=3$.

Let $\mathrm{n}=7$ and $\mathrm{g}=3$.

$$
\begin{array}{lllllll}
i & 1 & 2 & 3 & 4 & 5 & 6 \\
g^{i} \bmod 7 & 3 & 2 & 6 & 4 & 5 & 1
\end{array}
$$

But not all the multiplicative groups of positive composite integers n have generators (are cyclic).
Fact. $Z_{n}{ }^{*}$ has a (at least one) generator if and only if $n=2,4, p^{k}, 2 p^{k}$, where p is an odd prime and $\mathrm{k} \geq 1$.

Example

- Is the group $\{1,2,3,4 ;$ * $(\bmod 5)\}$ cyclic?
- The identity is 1 .
- Let $a=2$
- Recall that the notation: $a^{3}=$ a.a.a
- $1=a^{0}$
- $a^{1}=2$
- $a^{2}=4(\bmod 5)$
- $a^{3}=2^{*} 2^{*} 2=8=3(\bmod 5)$
- $a^{4}=16=1(\bmod 5)$
- 2 is a generator of the group
- Therefore, the group is cyclic.
- Ex: Is 3 (or 4) a generator of this group?

