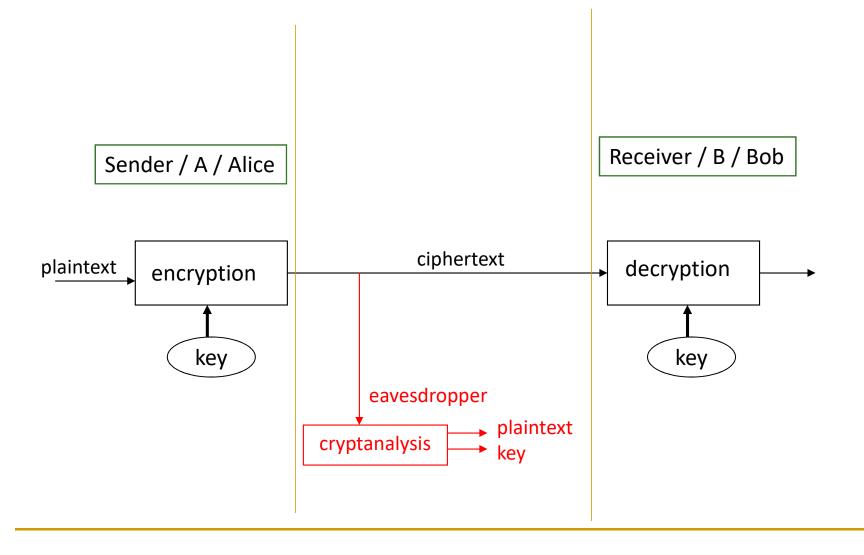


刘振


上海交通大学 计算机科学与工程系 电信群楼3-509 liuzhen@sjtu.edu.cn

Symmetric Key Encryption

Crypto – a brief introduction

- Cryptology The art and science of making and breaking "secret codes"
- Cryptography making "secret codes"
 - ychrpyaprtgo
 - □ C = M ⊕ K
- Cryptanalysis breaking "secret codes"
 - ychrpyaprtgo is cracked to _____, QED.
- Crypto all of the above (and more)
 - More on non-repudiation (signature), authentication, identification, zero-knowledge, commitment, and more...
 - □ Any reference books?... Bruce Schneier, HAC

A cipher or cryptosystem is used for encrypting/decrypting a plaintext/ciphertext

Cryptanalysis

Basic assumption

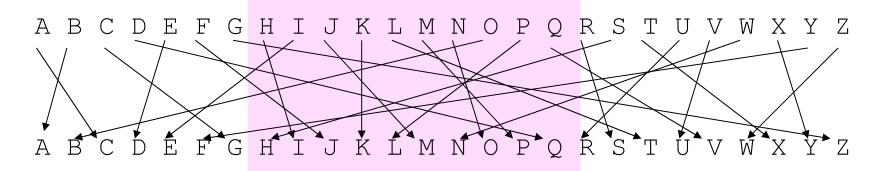
- Known as Kerckhoffs Principle
- The system is completely known to the attacker
- Only the key is secret
- Crypto algorithms are not secret
- No "security through obscurity"

Objective of an attacker

- Identify secret key used to encrypt a ciphertext
- (OR) recover the plaintext of a ciphertext without the secret key

Examples of (Classical) Symmetric Key Encryption Algorithms – Classical Cryptography

Ciphertexts:


1. IRXUVFRUHDAGVHYHABHDUVDIR

2. VSRQJHEREVTXDUHSDQWU

۵	b	С	d	e	f	g	h	i	j	k		m	n	0	р	q	r	S	†	u	V	w	x	У	z
D	E	F	G	Η	Ι	J	Κ	L	M	Ν	0	Ρ	Q	R	S	Т	U	۷	W	X	У	Ζ	A	В	С

Simple Substitution: each plaintext letter is substituted by a distinct ciphertext letter

EIMBULJIWLNYANJMVLIURAHIWAI

DEPARTMENTOFCOMPUTERSCIENCE

• What's the ciphertext of "solutionstofinalexam"?

An example of simple substitution... Copyright 2002 by Randy Glasbergen. www.glasbergen.com

"Encryption software is expensive...so we just rearranged all the letters on your keyboard."

An Example

Ciphertext (encrypted using simple substitution) PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOXBTFXQWAX BVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFQVXGTVJ VWLBTPQWAEBFPBFHCVLXBQUFEVWLXGDPEQVPQGVPPBFTIXPFHXZHVFA GFOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFQPBQWAQJJTODX QHFOQPWTBDHHIXQVAPBFZQHCFWPFHPBFIPBQWKFABVYYDZBOTHPBQP QJTQOTOGHFQAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFFACFCCFHQWAUV WFLQHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFHFQAITIXPFHXAFQHEF ZQWGFLVWPTOFFA

Question: how secure is Simple Substitution?

Let's do some analysis...

- A secret key (in Simple Substitution) is a *random permutation* of the alphabetic characters.
- E.g.

a	b	С	d	e	f	g	h	i	j	k	1	m
X	N	Y	A	H	P	<u>д</u> О	G	Z	Q	W	B	T
		n	a	T	.8	t	1 11	1 22	1 10		y D	1 7
n	U	P	4	Section & Street	•					and the second second	9	~

- Each permutation is a potential candidate of the secret key
- Question: how many distinct permutations are there? (in other words, how many distinct secret keys are in the key space?)

• Total number of possible permutations

26!

- 26! = 403,291,461,126,605,635,584,000,000 (27 digits) $\approx 2^{88}$
- Maybe... write a computer program to try all the possible keys exhaustively... (so-called Brute-force Attack)
- Calculation: suppose we have <u>one million</u> 3GHz PCs which can try <u>3</u> <u>billion permutations per second</u>, the machines will take 4,263 years to try all the 26! permutations...
 - Not so efficient
- Question: any better cracking algorithm?

Statistical Attack / Character Frequency Attack

- An interesting observation on simple substitution: the relative letter frequencies do not change during encryption
- letters in an alphabet are not equally common
- in English, e and t are by far the most common letters
- Probability distribution of the 26 English letters (Beker and Piper, 1982)

letter	probability	letter	probability
A	.082	N	.067
В	.015	0	.075
С	.028	Р	.019
D	.043	Q	.001
E	.127	R	.060
F	.022	S	.063
G	.020	Т	.091
Н	.061	U	.028
I	.070	V	.010
J	.002	W	.023
K	.008	Х	.001
L	.040	У	.020
Μ	.024	Z	.001

Basic Approach of Statistic Attack:

1.Identify possible encryptions of letter 'e' (the most common English letter)

2.Identify possible diagrams starting/finishing with letter 'e'

3.Use trigrams (e.g. find 'the')

4. Identify word boundaries

Iterate the above for the 2nd most common English letter and so on.

Ciphertext:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOXBTFXQWAX BVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFQVXGTVJV WLBTPQWAEBFPBFHCVLXBQUFEVWLXGDPEQVPQGVPPBFTIXPFHXZHVFAG FOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFQPBQWAQJJTODXQH FOQPWTBDHHIXQVAPBFZQHCFWPFHPBFIPBQWKFABVYYDZBOTHPBQPQJT QOTOGHFQAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFFACFCCFHQWAUVWFL QHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFHFQAITIXPFHXAFQHEFZQW GFLVWPTOFFA

Ciphertext frequency counts:

А	В	С	D	Ε	F	G	Н	Ι	J	К	L	Μ	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ
21	26	6	10	12	51	10	25	10	9	3	10	0	1	15	28	42	0	0	27	4	24	22	28	6	8

Question: How to build a symmetric key cryptosystem which is secure against statistical attack?

One-time Pad Encryption

Encryption: Plaintext \oplus Key = Ciphertext

e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111

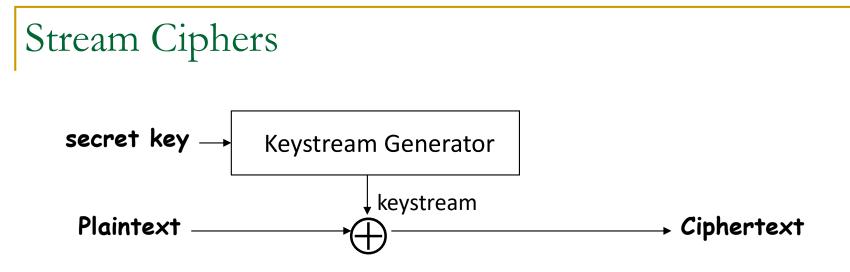
	h	е	i	I	h	i	t	Ι	е	r	
Plaintext:	001	000	010	100	001	010	111	100	000	101	
Key:	111	101	110	101	111	100	000	101	110	000	_
Ciphertext:	110	101	100	001	110	110	111	001	110	101	
	S	r	Ι	h	S	S	t	h	S	r	

e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111

Decryption: Ciphertext \oplus Key = Plaintext

	S	r	Ι	h	S	S	t	h	S	r
Ciphertext:	110	101	100	001	110	110	111	001	110	101
Key:	111	101	110	101	111	100	000	101	110	000
Plaintext:	001	000	010	100	001	010	111	100	000	101
	h	е	i	Ι	h	i	t	Ι	е	r

Pad must be random, used only once
Pad has the same size as message


Questions: What are the current symmetric key cryptosystems?

There are many...

They can be categorized into two types:

1.Stream Cipher

2.Block Cipher

- Secret key length: 128 bits, 256 bits, etc.
- Maximum plaintext length: usually can be arbitrarily long.
- Security: Given a "long" segment of keystream (e.g. 2⁴⁰ bits), the secret key cannot be derived AND the subsequent segment of the keystream cannot be deducted.

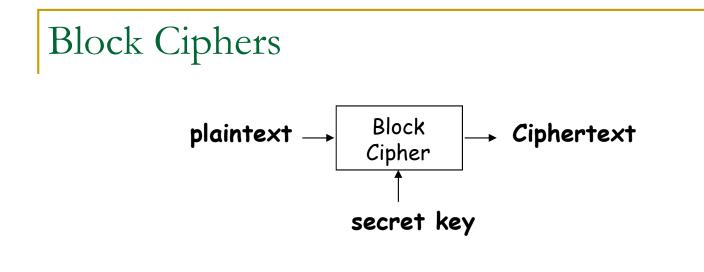
RC4

- A stream cipher
- Ron's code version 4 (Ronald Rivest)
- Stream ciphers are generally faster than block ciphers
- RC4
 - Stage 1: RC4 initialization
 - □ Stage 2: RC4 keystream generation

RC4 Initialization

□ Setup:

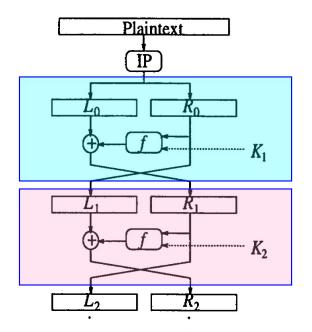
```
byte key[N]; // secret key (e.g. N = 16, i.e. 128-bit key)
       byte K[256]; // keying material
       byte S[256]; // internal states
□ Initialization:
          for i = 0 to 255
               S[i] = i
               K[i] = key[i \pmod{N}]
          j = 0
          for i = 0 to 255
               j = (j + S[i] + K[i]) \mod 256
               swap(S[i], S[j])
          i = j = 0
```

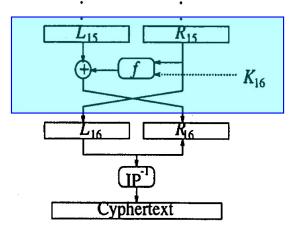

S[] is the permutation of 0,1,...,255

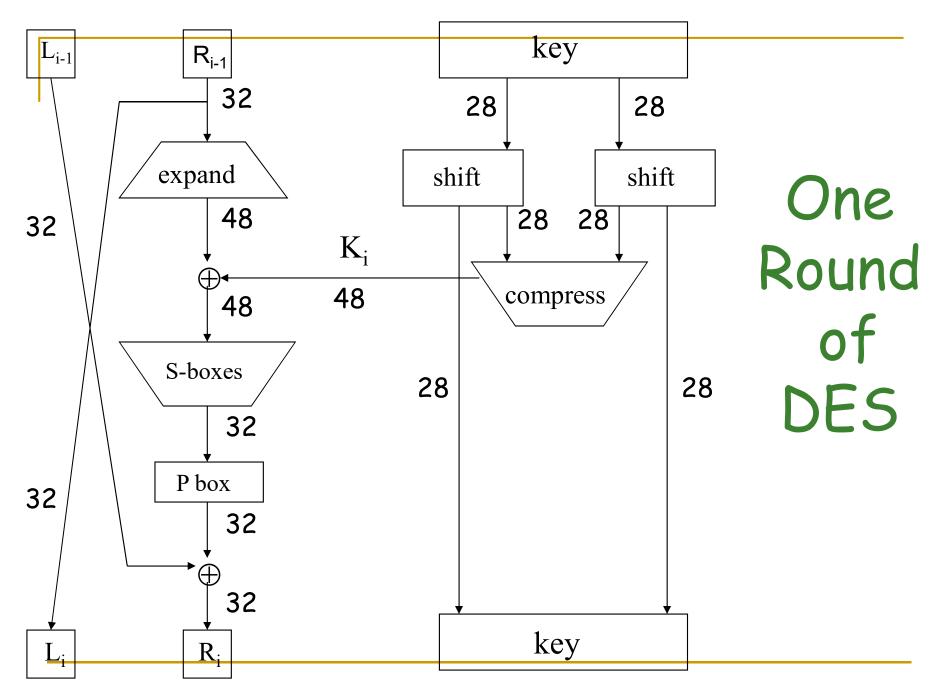
RC4 Keystream Generation

- To output a keystream byte, swap table elements and select a byte
- **•** Keystream generation:

```
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap(S[i], S[j])
t = (S[i] + S[j]) mod 256
KeyStreamByteSelected = S[t]
```


- Use the KeyStreamByteSelected to do XOR with one byte of plaintext, then iterate the keystream generation steps above for getting another byte of keystream
- Note: Some research results show that the first 256 bytes must be discarded, otherwise attacker may be able to recover the key.




- A block cipher takes a *block* of **plaintext** and a **secret key**, produces a *block* of **ciphertext**.
- The key is **reused** for different plaintext blocks
- Typical block sizes: 64 bits, 128 bits, 192 bits, 256 bits
- Key sizes: 56 bits (DES), 128/192/256 bits (AES)
- Popular block ciphers: DES, 3DES, AES, Twofish, Serpent

(Iterated) Block Cipher

- Ciphertext obtained from plaintext by iterating a round function
- Input to round function consists of key and the output of previous round
- DES: 16 rounds of Feistel round function
 - Block size: 64 bits
 - Key size: 56 bits

Security of DES

- Security of DES depends solely on the internals of f
- Thirty years of intense analysis has revealed no "back door"
- The most effective attack today against DES is still the exhaustive key search (aka bruteforce attack)

Exhaustive Key Search

 Given a plaintext x and corresponding ciphertext y, every possible key would be tested until a key K is found such that

E(K, x) = y

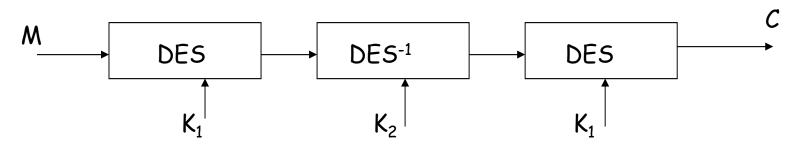
Note: there may be more than one such key K.

- For DES, total number of keys = $2^{56} \approx 7.2 \times 10^{16}$ keys
- Assume at the speed of 10⁶ encryptions per second, it would need more than 1000 years to break DES.
- Diffie and Hellman postulated in 1977 that a DES cracking machine with 10⁶ processors, each could test 10⁶ keys per second, could be built for about US\$20M.
 - This machine can break DES in about 10 hours.

Exhaustive Key Search

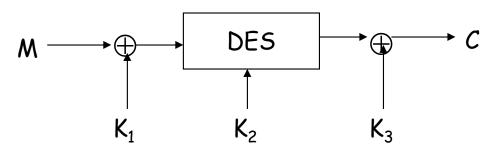
- In 1993, Michael Wiener presented a pipelined chip which tests 5×10^7 DES keys per second.
 - Each chip could cost US\$10 and a frame of 5760 chips would cost about \$100K.

Machine Unit Cost	Expected Time
\$100,000 (1 frame)	35 hours
\$1,000,000 (10 frames)	3.5 hours
\$10,000,000 (100 frames)	21 minutes


- In 1998, DES cracker (nicknamed "Deep Crack" <u>http://en.wikipedia.org/wiki/EFF_DES_cracker</u>) was built by the Electronic Frontier Foundation (EFF).
 - It performs 2⁵⁶ DES operations in 56 hours.
 - Cost: US\$250K (first piece), US\$50K \$75K (duplicates).
- Software version of DES cracking effort can be found at http://www.distributed.net/des/

What Should We Use Today?

- 3DES (or Triple DES)
- AES (or Rijndael)
- Other candidates
 - Twofish
 - □ RC6
 - Serpent

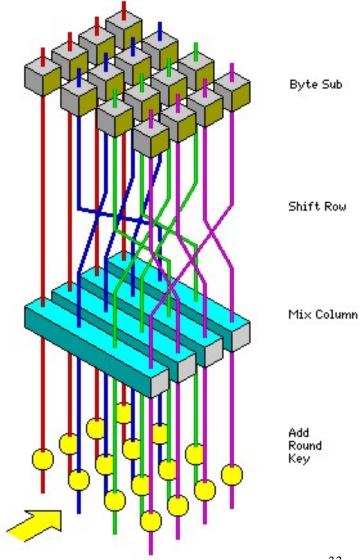


Triple DES: two 56-bit keys

DESX: three keys

 $\mathsf{C}=\mathsf{K}_3\oplus\mathsf{DES}(\mathsf{K}_2\,,\,\mathsf{M}\oplus\mathsf{K}_1)$

- Similar security to DES using differential cryptanalysis and linear cryptanalysis, which are theoretical attacks
- But much harder to break using exhaustive key search than DES.


What are the sizes of K1, K2, and K3?

Advanced Encryption Standard

- Replacement for DES
- AES competition (late 90's)
 - NSA openly involved
 - Many strong algorithms were proposed and cryptanalyzed publicly
 - Rijndael Algorithm was ultimately selected
 - Pronounced like "Rain Doll" or "Rhine Doll"
- Iterated block cipher (like DES)
- Not using Feistel round function (unlike DES)

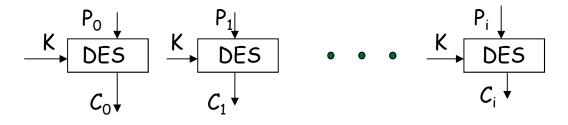
AES (Advanced Encryption Standard)


- Replacement of DES
- Block size: 128 bits
- Key length: 128, 192 or 256 bits (independent of block size)
- 10 to 14 rounds (depends on key length)
- Each round uses 4 functions (in
 - 3 "layers")
 - ByteSub (nonlinear layer)
 - ShiftRow (linear mixing layer)
 - MixColumn (nonlinear layer)
 - AddRoundKey (key addition layer)

Key Space

- The Key Space of a cipher is the set of all possible and distinct secret keys
 - E.g. The key space of DES is all distinct 56-bit binary strings
 - E.g. The size of the key space of simple substitution for case-insensitive English alphabet is 26!
- What's the key space size of AES?
- What's the key space size of RC4?

Multiple Blocks


- How to encrypt multiple blocks?
- A new key for each block?
 - As bad as (or worse than) the one-time pad!
- Encrypt each block independently?
- Make encryption depend on previous block(s), i.e., "chain" the blocks together?
- How to handle partial blocks?

Modes of Operation

- Many modes of operation we discuss three
- Electronic Codebook (ECB) mode
 - Obvious thing to do
 - Encrypt each block independently
 - There is a serious weakness
- Cipher Block Chaining (CBC) mode
 - Chain the blocks together
 - More secure than ECB
- Counter Mode (CTR) mode
 - Acts like a stream cipher
 - Popular for random access

ECB Mode

- Notations: C=E(K, P) P=D(K,C)
- Given plaintext $P = P_0, P_1, \dots, P_m, \dots$ (in blocks)
- Obvious way of using a block cipher is to encrypt plaintext blocks independently
 - EncryptDecrypt $C_0 = E(K, P_0),$ $P_0 = D(K, C_0),$ $C_1 = E(K, P_1),$ $P_1 = D(K, C_1),$ $C_2 = E(K, P_2),...$ $P_2 = D(K, C_2),...$

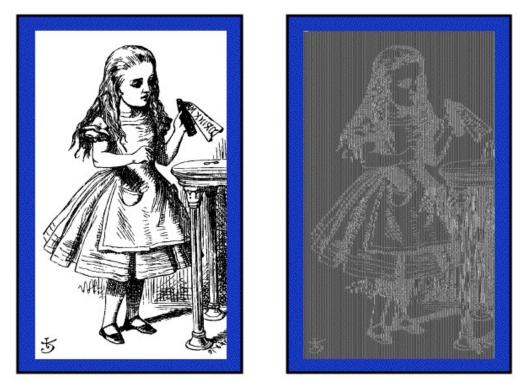
ECB Cut and Paste Attack

- Suppose plaintext is
 - Alice digs Bob. Trudy digs Tom.
- Assuming 64-bit blocks and 8-bit ASCII:

 P_0 ="Alice di", P_1 ="gs Bob.",

 $P_2 \!=\! ``Trudy di", P_3 \!=\! ``gs Tom. "$

- Ciphertext: C_0, C_1, C_2, C_3
- Trudy cuts and pastes: C₀,C₃,C₂,C₁
- Decrypts as


Alice digs Tom. Trudy digs Bob.

ECB Weakness

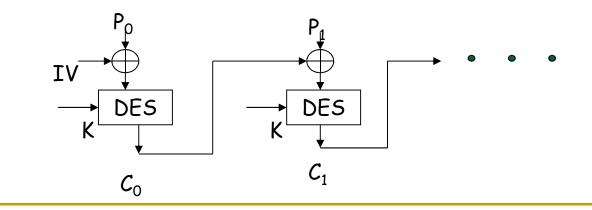
- Suppose $P_i = P_j$
- Then $C_i = C_j$ and Trudy knows $P_i = P_j$
- This gives Trudy some information, even if she does not know P_i or P_j
- Is this a serious issue?

Alice Hates ECB Mode

Alice's uncompressed image, Alice ECB encrypted

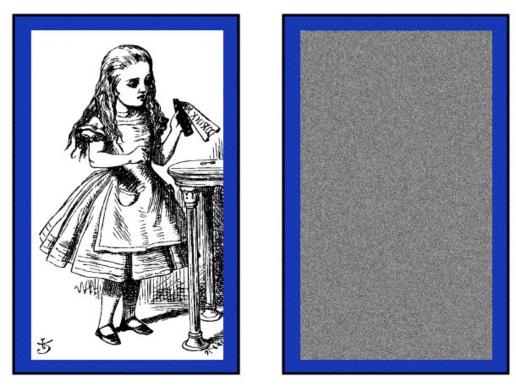
Why does this happen?

 \Box Same plaintext block \Rightarrow same ciphertext!


CBC Mode

- Blocks are "chained" together
- A random initialization vector, or IV, is required to initialize CBC mode
- IV is random, but is not a secret

Encryption

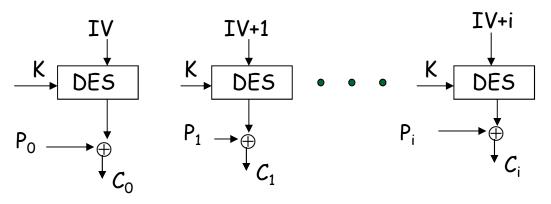

Decryption

$C_0 = E(K, IV \oplus P_0),$	$\mathbf{P}_0 = \mathbf{IV} \oplus \mathbf{D}(\mathbf{K}, \mathbf{C}_0),$
$C_1 = E(K, C_0 \oplus P_1),$	$\mathbf{P}_1 = \mathbf{C}_0 \oplus \mathbf{D}(\mathbf{K}, \mathbf{C}_1),$
$C_2 = E(K, C_1 \oplus P_2), \dots$	$\mathbf{P}_2 = \mathbf{C}_1 \oplus \mathbf{D}(\mathbf{K}, \mathbf{C}_2), \dots$

Alice Likes CBC Mode

Alice's uncompressed image, Alice CBC encrypted

Why does this happen?


Same plaintext yields different ciphertext!

Counter Mode (CTR)

Use block cipher like stream cipher

Encryption	Decryption
$C_0 = P_0 \oplus E(K, IV),$	$\mathbf{P}_0 = \mathbf{C}_0 \oplus \mathbf{E}(\mathbf{K}, \mathbf{IV}),$
$C_1 = P_1 \oplus E(K, IV+1),$	$\mathbf{P}_1 = \mathbf{C}_1 \oplus \mathbf{E}(\mathbf{K}, \mathbf{IV} + 1),$
$C_2 = P_2 \oplus E(K, IV+2), \dots$	$P_2 = C_2 \oplus E(K, IV+2), \dots$

- CTR is good for random access (both READ and WRITE)
- CBC is good for random READ only, but not WRITE

Summary

- Kerckhoffs Principle
- Simple Substitution Encryption and statistical attack
- One-time Pad Encryption
- Stream Cipher: RC4
- Block Cipher: DES, AES
- Key Space
- Modes of Operation