
Securing Internet
Communication: TLS

Network Security

Prof. Haojin
Materials adopted from Prof. David Wagner

2019

Today’s Lecture

• Applying crypto technology in practice
• Two simple abstractions cover 80% of the

use cases for crypto:
– “Sealed blob”: Data that is encrypted and

authenticated under a particular key
– Secure channel: Communication channel that

can’t be eavesdropped on or tampered with

• Today: SSL – a secure channel

Today’s Lecture

• Goal #1: overview of SSL/TLS, the most
prominent Internet security protocol
– Secures the web via HTTPS

• Goal #2: cement understanding of crypto
building blocks & how they’re used together

Building Secure End-to-End Channels

• End-to-end = communication protections
achieved all the way from originating client
to intended server
– With no need to trust intermediaries

• Dealing with threats:
– Eavesdropping?

• Encryption (including session keys)

– Manipulation (injection, MITM)?
• Integrity (use of a MAC); replay protection

– Impersonation?
• Signatures

What’s missing?(Availability …)

Building A Secure End-to-End
Channel: SSL/TLS

• SSL = Secure Sockets Layer (predecessor)
• TLS = Transport Layer Security (standard)

– Both terms used interchangeably

• Security for any application that uses TCP
– Secure = encryption/confidentiality +

integrity + authentication (of server, but
not of client)

– E.g., puts the ‘ s ’ in “https”

Regular web surfing - http: URL

But if we click here …

Web surfing with TLS/SSL - https: URL

Note: Amazon makes sure that all of these
images, etc., are now also fetched via https:
URLs.

Doing so gives the web page full integrity, in
keeping with end-to-end security.

(Browsers do not provide this “promotion”
automatically.)

Basic idea
• Browser (client) picks some

symmetric keys for encryption
+ authentication

• Client sends them to server,
encrypted using RSA public-
key encryption

• Both sides send MACs

• Now they use these keys to
encrypt and authenticate all
subsequent messages, using
symmetric-key crypto

Browser
Amazon
Server

HTTPS Connection (SSL / TLS)

• Browser (client) connects to
Amazon’s HTTPS server

• Client picks 256-bit random
number RB, sends over list of
crypto algorithms it supports

• Server picks 256-bit random
number RS, selects algorithms
to use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert

Browser
Amazon
Server

HTTPS Connection (SSL / TLS)

• Browser (client) connects via
TCP to Amazon’s HTTPS server

• Client picks 256-bit random
number RB, sends over list of
crypto protocols it supports

• Server picks 256-bit random
number RS, selects protocols to
use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert

Browser
Amazon
Server

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs
“Premaster Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

• Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

Browser

PS

PS

Amazon
Server

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs
“Premaster Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

• Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

Browser

PS

PS

These seed a cryptographically strong
pseudo-random number generator (PRNG).
Then browser & server produce CB, CS, etc.,
by making repeated calls to the PRNG.

Amazon
Server

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs
“Premaster Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

• Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)

– One pair to use in each direction

• Browser & server exchange MACs
computed over entire dialog so far

• If good MAC, Browser displays

• All subsequent communication
encrypted w/ symmetric cipher (e.g.,
AES128) cipher keys, MACs
– Sequence #’s thwart replay attacks

Browser

PS

PS

Amazon
Server

Alternative: Key Exchange via Diffie-Hellman

• For Diffie-Hellman, server
generates random a, sends public
params and ga mod p

• – Signed with server’s private key

• Browser verifies signature

• Browser generates random b,
computes PS = gab mod p, sends
to server

• Server also computes

• PS = gab mod p

• Remainder is as before: from PS,
RB, and RS, browser & server
derive symm. cipher keys (CB, CS)
and MAC integrity keys (IB, IS),
etc…

Browser

PS

PS

…

Amazon
Server

HTTPS Connection (SSL / TLS)

• Browser (client) connects via
TCP to Amazon’s HTTPS server

• Client picks 256-bit random
number RB, sends over list of
crypto protocols it supports

• Server picks 256-bit random
number RS, selects protocols to
use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert

Browser
Amazon
Server

Certificates

• Cert = signed statement about someone’s public key
– Note that a cert does not say anything about the identity of

who gives you the cert
– It simply states a given public key KBob belongs to Bob …

• … and backs up this statement with a digital signature made using a
different public/private key pair, say from Verisign

• Bob then can prove his identity to you by you sending
him something encrypted with KBob …
– … which he then demonstrates he can read

• … or by signing something he demonstrably uses
• Works provided you trust that you have a valid copy

of Verisign’s public key …
– … and you trust Verisign to use prudence when she signs

other people’s keys

Validating Amazon’s Identity

• Browser compares domain name in cert w/ URL
– Note: this provides an end-to-end property

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to issuer
– These are hardwired into the browser – and trusted!
– There could be a chain of these …

• Browser applies issuer’s public key to verify
signature S, obtaining hash of what issuer signed
– Compares with its own SHA-1 hash of Amazon’s cert

• Assuming hashes match, now have high
confidence it’s indeed Amazon …
– assuming signatory is trustworthy

= assuming didn’t lose
private key; assuming
didn’t sign thoughtlessly

End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi
session?
– (maybe by breaking crummy WEP security)
– But: encrypted communication is unreadable

• No problem!

• DNS cache poisoning?
– Client goes to wrong server
– But: detects impersonation

• No problem!

• Attacker hijacks our connection, injects new traffic
– But: data receiver rejects it due to failed integrity check

• No problem!

Powerful Protections, cont.

• DHCP spoofing?
– Client goes to wrong server
– But: detects impersonation

• No problem!

• Attacker manipulates routing to run us by an
eavesdropper or take us to the wrong server?
– But: they can’t read; we detect impersonation

• No problem!

• Attacker slips in as a Man In The Middle?
– But: they can’t read, they can’t inject
– They can’t even replay previous encrypted traffic
– No problem!

Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer
– These are hardwired into the browser – and trusted!

• What if browser can’t find a cert for the issuer?

Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer
– These are hardwired into the browser – and trusted!

• What if browser can’t find a cert for the issuer?

• If it can’t find the cert, then warns the user that site
has not been verified
– Can still proceed, just without authentication

• Q: Which end-to-end security properties do we lose
if we incorrectly trust that the site is whom we think?

• A: All of them!
– Goodbye confidentiality, integrity, authentication
– Active attacker can read everything, modify, impersonate

SSL / TLS Limitations
• Properly used, SSL / TLS provides powerful end-

to-end protections

• So why not use it for everything??

• Issues:
– Cost of public-key crypto (fairly minor)

o Takes non-trivial CPU processing (but today a minor issue)
o Note: symmetric key crypto on modern hardware is non-issue

– Hassle of buying/maintaining certs (fairly minor)

SSL / TLS Limitations
• Properly used, SSL / TLS provides powerful end-

to-end protections

• So why not use it for everything??

• Issues:
– Cost of public-key crypto (fairly minor)

o Takes non-trivial CPU processing (but today a minor issue)
o Note: symmetric key crypto on modern hardware is non-issue

– Hassle of buying/maintaining certs (fairly minor)
– Integrating with other sites that don’t use HTTPS
– Latency: extra round trips ⇒ 1st page slower to load

Group Discussions

• Can SSL/TLS perfectly address all of the security issues?

SSL / TLS Limitations, cont.
• Problems that SSL / TLS does not take care of ?

• TCP-level denial of service
– SYN flooding
– RST injection

o (but does protect against data injection!)

• SQL injection / XSS / server-side coding/logic flaws

• Vulnerabilities introduced by server inconsistencies

SSL / TLS Limitations, cont.
• Problems that SSL / TLS does not take care of ?

• SQL injection / XSS / server-side coding/logic flaws

• Vulnerabilities introduced by server inconsistencies

Regular web surfing: http: URL

So no integrity - a MITM
attacker can alter pages
returned by server …

And when we click here …
… attacker has changed the corresponding link so
that it’s ordinary http rather than https!

We never get a chance to use TLS’s protections! :-(

“ss lstrip” attack

SSL / TLS Limitations, cont.
• Problems that SSL / TLS does not take care of ?

• SQL injection / XSS / server-side coding/logic flaws

• Vulnerabilities introduced by server inconsistencies

• Browser coding/logic flaws

• User flaws
– Weak passwords
– Phishing

• Issues of trust …

TLS/SSL Trust Issues

• User has to make correct trust decisions …

.‘

.‘

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

TLS/SSL Trust Issues, cont.

• “Co mm ercial certificate authorities protect you from
anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

TLS/SSL Trust Issues

• “Co mm ercial certificate authorities protect you from
anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

• Of course, it’s not just their greed that matters …

This appears to be a
fully valid cert using
normal browser
validation rules.

Only detected by
Chrome due to its
recent introduction of
cert “p inn ing” –
requiring that certs
for certain domains
must be signed by
specific CAs rather
than any generally
trusted CA

TLS/SSL Trust Issues

• “Co mm ercial certificate authorities protect you from
anyone from whom they are unwilling to take money.”
– Matt Blaze, circa 2001

• So how many CAs do we have to worry about,
anyway?

• Of course, it’s not just their greed that matters …
• … and it’s not just their diligence & security that

matters …
– “A decade ago, I observed that commercial certificate

authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong; they
don't even do that much.” - Matt Blaze, circa 2010

BONUS SLIDES

Note: the cert is “ forged” in the sense
that it doesn’t really belong to Gmail,
PayPal, or whomever. But it does not
appear forged because it includes a
legitimate signature from a trusted CA.

