
Attacks on DNS:
Risks of Caching

May 10, 2019

The Inside Story of How Facebook
Responded to Tunisian Hacks

It was on Christmas Day that Facebook's Chief Security Officer Joe Sullivan first

noticed strange things going on in Tunisia. Reports started to trickle in that

political-protest pages were being hacked. "We were getting anecdotal reports

saying 'It looks like someone logged into my account and deleted it' " Sullivan

said.

DNS Overview

• DNS translates www.google.com to 74.125.25.99

• It’s a performance-critical distributed database.

• DNS security is critical for the web.
(Same-origin policy assumes DNS is secure.)

• Analogy: If you don’t know the answer to a question,
ask a friend for help (who may in turn refer you to a
friend of theirs, and so on).

DNS Overview

• DNS translates www.google.com to 74.125.25.99

• It’s a performance-critical distributed database.

• DNS security is critical for the web.
(Same-origin policy assumes DNS is secure.)

• Analogy: If you don’t know the answer to a question,
ask a friend for help (who may in turn refer you to a
friend of theirs, and so on).

• Security risks: friend might be malicious,
communication channel to friend might be insecure,
friend might be well-intentioned but misinformed

request ing host
xyz.poly.edu eecs.mit.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6
author itat ive DNS server

(for ‘mit .edu’)
dns.mit.edu

7
8

TLD DNS server
(‘.edu’)

DNS Lookups via a Resolver

Host at xyz.poly.edu
wants IP address for
eecs.mit.edu

Caching heavily
used to minimize

lookups

Group Discussion
• Please discuss the potential attacks towards DNS

and illustrate it.

Security risk #1: malicious DNS server

• Of course, if any of the DNS servers queried are
malicious, they can lie to us and fool us about the
answer to our DNS query

• (In fact, they used to be able to fool us about the
answer to other queries, too. We’ll come back to
that.)

Security risk #2: on-path eavesdropper

• If attacker can eavesdrop on our traffic…
we’re hosed.

• Why? We’ll see why.

Security risk #3: off-path attacker

• If attacker can’t eavesdrop on our traffic, can he
inject spoofed DNS responses?

• This case is especially interesting, so we’ll look at it
in detail.

DNS Threats

• DNS: path-critical for just about everything we do
– Maps hostnames⇔ IP addresses
– Design only scales if we can minimize lookup traffic

o #1 way to do so: caching
o #2 way to do so: return not only answers to queries, but additional

info that will likely be needed shortly

• What if attacker eavesdrops on our DNS queries?
– Then similar to DHCP/TCP, can spoof responses

• Consider attackers who can’t eavesdrop - but still
aim to manipulate us via how the protocol functions

• Directly interacting w/ DNS: dig program on Unix
– Allows querying of DNS system
– Dumps each field in DNS responses

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-
P2

(“A”) for hostname eecs.mit.edu via DNS

<<>> eecs.mit.edu a

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

Use Unix “dig” utility to look up IP address

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

;;
;;

global options:
+cmd Got answer:

;;
;;

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

3

;; AUTHORITY
mit.edu.

SECTION: 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-
P2

<<>> eecs.mit.edu a

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY
mit.edu.
mit.edu.
mit.edu.

SECTION:
11088 IN
11088 IN

N
S
N
S

BITSY.mit.edu
.
W20NS.mit.edu
.

11088 IN NS STRAWB.mit.edu.The question we asked the server

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

;;
;;

global options:
+cmd Got answer:

;;
;;

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

3

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-
P2

<<>> eecs.mit.edu a

;; QUESTION SECTION:
;eecs.mit.edu. IN A

00 IN A 18.62.1.6

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

;;
;;

global options:
+cmd Got answer:

;;
;;

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

3

;; ANSWER SECTION:
eecs.mit.edu.

216 A 16-bit transaction identifier that enables
the DNS client (dig, in this case) to match up

the reply with its original request
;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu
a;; global options: +cmd
;;
;;
;;

Got answer:
->>HEADER<<-
flags: qr rd

opco
d
ra;
Q

e: QUERY, status: NOERROR, id: 19901
UERY: 1, ANSWER: 1, AUTHORITY: 3,

ADDIT
IONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.

“Answer” tells us the IP address associated
with eecs.mit.edu is 18.62.1.6 and we can
cache the result for 21,600 seconds

IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

“Answer” tells us the IP address associated with
eecs.mit.edu is 18.62.1.6 and we can cache the result
for 21,600 seconds

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

;; AUTHORITY
mit.edu.

SECTION: 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-
P2

<<>> eecs.mit.edu a

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY
mit.edu.
mit.edu.
mit.edu.

SECTION:
11088 IN NS

BITSY.mit.e
11088 IN NS

W20NS.mit.e
11088 IN NS .

du.
du.
edu
.

In general, a single Resource Record (RR) like
this includes, left-to-right, a DNS name, a time-
to-live, a family (IN for our purposes - ignore),
a type (Ahere), and an associated value;; ADDITIONAL SECTIO

STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

;;
;;

global options:
+cmd Got answer:

;;
;;

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

3

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu
a;; global options: +c
;; Got answer:
;; ->>HEADER<<- opcod
;; flags: qr rd ra; Q

md

e: QUERY, status: NOERROR, id: 19901
UERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

IN A

3

;; QUESTION SECTION:
;eecs.mit.edu.

;; ANSWER SECTION:
eecs.mit.edu.

If the “Answer” had been empty, then the resolver’s
next step would be to send the original query to one of
these name servers.

21600 IN A 18.62.1.6

;; AUTHORITY
mit.edu.
mit.edu.
mit.edu.

SECTION:
11088 IN
11088 IN
11088 IN

NS
NS
NS

BITSY.mit.edu.
W20NS.mit.edu.
STRAWB.mit.edu
.

“Authority” tells us the name servers responsible for
the answer. Each RR gives the hostname of a different
name server (“NS”)for names in mit.edu. We should
cache each record for 11,088 seconds.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

N:
21600 IN A 18.62.1.6

;; ANSWER SECTIO
eecs.mit.edu.

“Additional” provides extra information to save us from
making separate lookups for it, or helps with bootstrapping.

Here, it tells us the IP addresses for the hostnames of the
name servers. We add these to our cache.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

;; AUTHORITY
mit.edu.

SECTION: 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

DNS Protocol

Lightweight exchange
of query and reply
messages, both
with same message
format

Identification Flags

Questions # Answer RRs

Authority RRs # Additional RRs

Questions

(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Additional information (variable
of resource records)

16 bits 16 bits

Primarily uses UDP
for its transport
protocol, which is
what we’ll assume

UDP Payload

Frequently, both
clients and servers
use port 53

UDP Header

IP Header

SRC port DST port

checksum length

DNS
Query

or

Reply

DNS Protocol

Lightweight exchange
of query and reply
messages, both
with same message
format

Identification Flags

Questions # Answer RRs

Authority RRs # Additional RRs

Questions

(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Additional information (variable
of resource records)

16 bits 16 bits

Primarily uses UDP
for its transport
protocol, which is
what we’ll assume

UDP Payload

Frequently, both
clients and servers
use port 53

UDP Header

IP Header

SRC=53 DST=53

checksum length

DNS
Query

or

Reply

DNS Protocol, cont.

• Message header:

• Identification: 16 bit # for
query, reply to query uses
same #

• Along with repeating the
Question and providing
Answer(s), replies can include
“Authority” (name server
responsible for answer) and
“Additional” (info client is
likely to look up soon anyway)

• Each Resource Record has a
Time To Live (in seconds) for
caching (not shown)

Authority RRs # Additional RRs

Questions

(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Additional information (variable
of resource records)

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

IP Header

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu
a;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QU
;; flags: qr rd ra; QUERY:

ERY, status: NOERROR, id:
19 1, ANSWER: 1,

AUTHORITY: 3,

IN A

600 IN A 18.62.

901
ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.

;; ANSWER SECTION:
eecs.mit.edu. 21 1.6

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

What if the mit.edu server
is untrustworthy? Could
its operator steal, say, all
of our web surfing to
berkeley.edu’s main web
server?

;; AUTHORITY
mit.edu.

SECTION: 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu
a

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.
BITSY.mit.edu.
W20NS.mit.edu.

126738
166408
126738

IN
IN
IN

A
A
A

18.71.0.151
18.72.0.3
18.70.0.160

Let’s look at a flaw in the
original DNS design
(since fixed)

21600 IN A 18.62.1.6

;;
;;

global options:
+cmd Got answer:

;;
;;

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

3

;; AUTHORITY
mit.edu.

SECTION: 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-
P2

<<>> eecs.mit.edu a

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu.

What could happen if the mit.edu server
returns the following to us instead?

21600 IN A 18.62.1.6

What could happen if the mit.edu server returns
the following to us instead?

;; ADDITIONAL SECTION:
www.berkeley.edu.
BITSY.mit.edu.
W20NS.mit.edu.

30
166408
126738

IN
IN
IN

A
A
A

18.6.6.6
18.72.0.3
18.70.0.160

;;
;;

global options:
+cmd Got answer:

;;
;;

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

3

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

21600 IN A 18.62.1.6
;; ANSWER SECTION:
eecs.mit.edu.

;;
AUTHORITY
mit.edu
.
mit.edu
.
mit.edu
.

SECTION:
11088 IN
11088 IN
30 IN

NS
NS
NS

BITSY.mit.edu.
W20NS.mit.edu.
www.berkeley.edu.

We’d dutifully store in our cache a mapping of
www.berkeley.edu to an IP address under
MIT’s control. (It could have been any IP
address they wanted, not just one of theirs.)

;; ADDITIONAL SECTION:
www.berkeley.edu.
BITSY.mit.edu.
W20NS.mit.edu.

30
166408
126738

IN
IN
IN

A
A
A

18.6.6.6
18.72.0.3
18.70.0.160

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-
P2

<<>> eecs.mit.edu a

;; QUESTION SECTION:
;eecs.mit.edu. IN A

21600 IN A 18.62.1.
;; ANSWER SECTION:
eecs.mit.edu. 6

In this case they chose to make the
mapping disappear after 30 seconds.
They could have made it persist for
weeks, or disappear even quicker.

;; ADDITIONAL SECTION:
www.berkeley.edu.
BITSY.mit.edu.
W20NS.mit.edu.

30
166408
126738

IN
IN
IN

A
A
A

18.6.6.6
18.72.0.3
18.70.0.160

;;
;;

global options:
+cmd Got answer:

;;
;;

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

3

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTIO
eecs.mit.edu.

N:
21600 IN A 18.62.1.6

;; ADDITIONAL SECTION:
www.berkeley.edu.
BITSY.mit.edu.
W20NS.mit.edu.

30
166408
126738

IN
IN
IN

A
A
A

18.6.6.6
18.72.0.3
18.70.0.160

How do we fix such cache poisoning?
;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu
a;; global options: +
;; Got answer:
;;
;;

cmd

de: QUERY, status: NOERROR, id: 19901
UERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

IN A

->>HEADER<<- opco
flags: qr rd ra; Q

;; QUESTION SECTION:
;eecs.mit.edu.

;; ANSWER SECTION:
eecs.mit.edu.

No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN

11088 IN
30 IN

N
S
NS
NS

BITSY.mit.edu.
W20NS.mit.edu.
www.berkeley.edu
.

mit.edu.
mit.edu.

Don’t accept Additional records unless
they’re for the domain we’re looking up

E.g., looking up eecs.mit.edu ⇒ only accept
additional records from *. mit.edu

=
;; ADDITIONAL SECTION:
www.berkeley.edu.
BITSY.mit.edu.
W20NS.mit.edu.

30
166408
126738

IN
IN
IN

A
A
A

18.6.6.6
18.72.0.3
18.70.0.160

Security risk #1: malicious DNS server

• Of course, if any of the DNS servers queried are
malicious, they can lie to us and fool us about the
answer to our DNS query…

• and they used to be able to fool us about the
answer to other queries, too, using cache
poisoning. Now fixed (phew).

Security risk #2: on-path eavesdropper

• If attacker can eavesdrop on our traffic…
we’re hosed.

• Why?

Security risk #2: on-path eavesdropper

• If attacker can eavesdrop on our traffic…
we’re hosed.

• Why? They can see the query and the 16-bit
transaction identifier, and race to send a spoofed
response to our query.

Security risk #3: off-path attacker

• If attacker can’t eavesdrop on our traffic, can he
inject spoofed DNS responses?

• Answer: It used to be possible, via blind spoofing.
We’ve since deployed mitigations that makes this
harder (but not totally impossible).

Blind spoofing

• Say we look up
mail.google.com ; how can an
off-path attacker feed us a
bogus Aanswer before the
legitimate server replies?

• How can such a remote
attacker even know we are
looking up mail.google.com?

Suppose, e.g., we visit a web
page under their control:

Authority RRs # Additional RRs

Questions

(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Additional information (variable
of resource records)

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

. . . < i m g src="http://mail.google.com" …> . . .

Blind spoofing

• Say we look up
mail.google.com ; how can
an off-path attacker feed us a
bogus Aanswer before the
legitimThis HTML snippet causes our

browser to try to fetch an image from
• How cmail.google.com . To do that, our

ate server replies?

an such an attacker

know we are looking up
.google.com?

even
mail
Suppose, e.g., we visit a web
page under their control:

16 bits 16 bits

SRC=53 DST=53

checksum length

Identification Flags

Questions # Answer RRs

Authority RRs # Additional RRs

Questions

(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Additional information (variable
of resource records)

This HTML snippet causes our
browser to try to fetch an image from
mail.google.com. To do that, our
browser first has to look up the IP
address associated with that name.

. . . < i m g src="http://mail.google.com" …> . . .

Blind spoofing

They observe ID k here

Originally, identification field
incremented by 1 for each
request. How does attacker
guess it?

Once they know we’re looking
it up, they just have to guess
the Identification field and reply
before legit server.

How hard is that?

Additional information
(variable # of resource records)

Authority RRs # Additional RRs

Questions

(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Fix?

So this will be k+1

DNS Blind Spoofing, cont.

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and
no more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we pretty much safe?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe –
phew!?

Additional information
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Questions

(variable # of resource records)

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Extra Material

• DNS threats highlight:
– Attackers can attack opportunistically rather than

eavesdropping
o Cache poisoning only required victim to look up some name

under attacker’s control (has been fixed)

– Attackers can often manipulate victims into vulnerable
activity

o E.g., IMG SRC in web page to force DNS lookups

– Crucial for identifiers associated with communication
to have sufficient entropy (= a lot of bits of
unpredictability)

– “Attacks only get better”: threats that appears
technically remote can become practical due to
unforeseen cleverness

Summary of DNS Security Issues

Common Security Assumptions

• (Note, these tend to be pessimistic … but prudent)

• Attackers can interact with our systems without
particular notice
– Probing (poking at systems) may go unnoticed …
– … even if highly repetitive, leading to crashes, and easy

to detect

• It’s easy for attackers to know general information
about their targets
– OS types, software versions, usernames, server ports, IP

addresses, usual patterns of activity, administrative
procedures

Common Assumptions

• Attackers can obtain access to a copy of a given
system to measure and/or determine how it works

• Attackers can make energetic use of automation
– They can often find clever ways to automate

• Attackers can pull off complicated coordination
across a bunch of different elements/systems

• Attackers can bring large resources to bear if needed

– Computation, network capacity

– But they are not super-powerful (e.g., control entire ISPs)

Common Assumptions

• If it helps the attacker in some way, assume they
can obtain privileges

– But if the privilege gives everything away (attack becomes
trivial), then we care about unprivileged attacks

• The ability to robustly detect that an attack has
occurred does not replace desirability of preventing

• Infrastructure machines/systems are well protected
(hard to directly take over)

– So a vulnerability that requires infrastructure compromise
is less worrisome than same vulnerability that doesn’t

Common Assumptions

• Network routing is hard to alter … other than with
physical access near clients (e.g., “coffeeshop”)
– Such access helps fool clients to send to wrong place

– Can enable Man-in-the-Middle (MITM) attacks

• We worry about attackers who are lucky

– Since often automation/repetition can help “make luck”

• Just because a system does not have apparent
value, it may still be a target

• Attackers are undaunted by fear of getting caught

