
网络安全技术
刘振

上海交通大学 计算机科学与工程系

电信群楼3-509

liuzhen@sjtu.edu.cn

1

SSL and IPSec
2

Introduction to Bitcoin

2. Transaction in Bitcoin
 A Transaction

 A Transaction
 Meta-data

Transaction hash/ID

2. Transaction in Bitcoin

 A Transaction
 INPUTS：

 Each input includes :

 (1) a reference to some output of some previous transaction;

 (2) A proof that the spending is authorized.

2. Transaction in Bitcoin

Input 1

Input 2, …

 A Transaction
 Output

 Each output includes： （1）a value （2）an address

A transaction is valid, if
1. The total value of outputs is less than that of the input coins（the difference will be

the transaction fee）
2. The public key and signature provided in each input is verified valid
3. The transaction output (TXO) referenced by each input is not referenced by other

previous transactions

2. Transaction in Bitcoin

 Script of Bitcoin

 The address in TXO is not a hash value of a public key, instead,
it is a script source code including operators and operands：
scriptPubKey

 Furthermore, the signature and public key in each input can also
be regarded as script source code, including only operands：
ScriptSig

2. Transaction in Bitcoin

 Script of Bitcoin

 The address in TXO is not a hash value of a public key, instead,
it is a script source code including operators and operands：
scriptPubKey

 Furthermore, the signature and public key in each input can also
be regarded as script source code, including only operands：
ScriptSig

2. Transaction in Bitcoin

TX1

scriptPubKey
n

TX2

scriptPubKey
m

scriptSig

A B C
TX1: A->B n BTC

Generate using the secret key by the owner

Verify publicly by anyone

TX2: B->C m BTC

 Script of Bitcoin

OP_DUP

OP_HASH160

<pubKeyHash?>

OP_EQUALVERIFY

OP_CHECKSIG

<sig>

<pubKey>

Input script (scriptSig)
For current transaction

Output script (scriptPubKey)
Of some previous TXO serving as
the input for current transaction

Output script specify the destination address，input script specify the public key and a
signature

To check an input, put the input script of a input and the output script of the referenced TXO
together, and execute the operators and operands. If the result is true, it is a valid input.

2. Transaction in Bitcoin

3. Bitcoin Scripts
 Specified for Bitcoin（inspired by Forth）

 Simple

 Support cryptographic operators/operands

 Based on stack

 No limitation on time and space cost

 No loop instruction（not turning complete）

operation functionalities

OP_DUP Copy the top element of stack

OP_HASH160 Hash two times, the first one uses
SHA-256，and the second one
usesRIPEMD-160

OP_EQUALVERIFY Return true if equality holds,
retuen false otherwise

OP_CHECKSIG Verify the signature

OP_CHECKMULTISIG verify whether a threshold of the
signatures is achieved

3. Bitcoin Scripts

 example：

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> <OP_EQUALVERIFY> OP_CHECKSIG

<sig>

<pubKey>

<sig>

<pubKey>

<pubKey>

<sig>

<pubKeyHash>

<pubKey>

<sig>

<pubKeyHash?>

<pubKeyHash>

<pubKey>

<sig>

<pubKey>

<sig> true

OP_DUP

OP_HASH160

<pubKeyHash?>

OP_EQUALVERIFY

OP_CHECKSIG

<sig>

<pubKey>

3. Bitcoin Scripts

3. Bitcoin Scripts
 Pay to Script Hash (P2SH)
 The receiver tells the sender ``send your coins to the hash of this script.

Impose the condition that to redeem those coins, it is necessary to reveal
the script that has the given hash, and further, provide data that will make
the script evaluate to true”.

 The sender achieves this by using the Pay-to-script-hash (P2SH)
transaction type.
 The P2SH script simply hashes the top value on the stack, checks if it matches

the provided hash value, then executes a special second step of validation: that
top data value from the stack is reinterpreted as a sequence of instructions, and
executed a second time as a script, with the rest of the stack as input.

 it wasn’t part of Bitcoin’s initial design specification. It was added after the fact.

 it solves a couple of important problems:
 It removes complexity from the sender, so the recipient can just specify a hash

that the sender sends money to.

 Miners have to track the set of output scripts that haven’t been redeemed yet,
and with P2SH outputs, the output scripts are now much smaller as they only
specify a hash. All of the complexity is pushed to the input scripts.

 Escrow transactions

 Efficient micro-payments

 Lock time

3. Bitcoin Scripts: Applications

 Alice and Bob want to do business with each other — Alice wants to
pay Bob in Bitcoin for Bob to send some physical goods to Alice.
The problem though is that Alice doesn’t want to pay until after she’s
received the goods, but Bob doesn’t want to send the goods until
after he has been paid.

 A nice solution in Bitcoin that’s been used in practice is to introduce
a third party and do an escrow transaction, using MULTSIG.

 Alice creates a MULTISIG transaction that requires two of three
people to sign in order to redeem the coins. Those three people
are going to be Alice, Bob, and some third party arbitrator, Judy,
who will come into play in case there’s any dispute.

 This transaction is included in the block chain, and at this point,
these coins are held in escrow between Alice, Bob, and Judy,
such that any two of them can specify where the coins should go.

 Bob is convinced that it’s safe to send the goods over to Alice,
and deliver the goods physically.

3. Bitcoin Scripts: Escrow transactions

 Normal Case: Alice and Bob both sign a transaction
redeeming the funds from escrow, and sending them to
Bob.

 if Bob didn’t actually send the goods or they got lost in the
mail: Judy needs to get involved. Judy decides between
the two possible outcomes.
 If Judy thinks Bob is cheating, Judy and Alice sign a transaction,

sending the money from escrow back to Alice.

 If Judy thinks Alice is simply refusing to pay when she should, Judy
and Bob sign a transaction, sending the money to Bob.

 Judy decides between the two possible outcomes. But the
nice thing is that she won’t have to be involved unless
there’s a dispute.

3. Bitcoin Scripts: Escrow transactions

 Escrow transactions

3. Bitcoin Scripts: Escrow transactions

TX1

scriptPubKey
n

TX2

scriptPubKey
m

scriptSig

A B J

OP_CHECKMULTISIG:
(2,3)-()

Signature Generated by
Signature Generated by

 Alice is a customer who wants to continually pay Bob small amounts
of money for some service that Bob provides. For example, Bob
may be Alice’s wireless service provider, and requires her to pay a
small fee for every minute that she talks on her phone.
 Creating a Bitcoin transaction for every minute that Alice speaks on the

phone won’t work. That will create too many transactions, and the
transaction fees add up.

3. Bitcoin Scripts: Efficient micro-payment

TX1

scriptPubKey
[OP_CHECKMULTISIG:
(2,2)-(𝑃𝐾 ,𝑃𝐾)]
n

TX2-1

scriptPubKey (B)
1

scriptPubKey (A)
n-1

scriptSig
(𝜎)A

B

TX2-2

scriptPubKey (B)
2

scriptPubKey (A)
n-2

scriptSig
(𝜎)

TX2-k

scriptPubKey (B)
k

scriptPubKey (A)
n-k

scriptSig
(𝜎)

3. Bitcoin Scripts: Efficient micro-payment

1. Alice creates a MULTISIG transaction paying the maximum anount
Alice would ever need to spend to an output, which requires both
Alice and Bob to sign to release the coins. The transaction is
published to the blockchain.

2. After the first minute that Alice has used the service, she signs a
transaction spending those coins that were sent to the MULTISIG
address, sending one unit of payment to Bob and returning the rest
to Alice.

3. After the next minute of using the service, Alice signs another
transaction, this time paying two units to Bob and sending the rest to
herself.

4. …… Alice will keep sending these transactions to Bob every minute
that she uses the service. (These transactions are not signed by
Bob, nor are they being published to the blockchain.)

3. Bitcoin Scripts: Efficient micro-payment

 Eventually, Alice will finish using the service, and tells Bob, “I’m
done, please cut off my service.” At this point Alice will stop signing
additional transactions.

 Bob will disconnect the service, and will take that last transaction
that Alice sent him, sign it, and publish that to the block chain.

 The final transaction that Bob redeems pays him in full for the
service that he provided and returns the rest of the money to
Alice.

 All those transactions that Alice signed along the way won’t make it
to the block chain. Bob doesn’t have to sign them. They’ll just get
discarded.

 Problem: what if Bob never signs the last transaction? He may just
say, “I’m happy to let the coins sit there in escrow forever,” in which
case, maybe the coins won’t move, but Alice will lose the full value
that she paid at the beginning.

3. Bitcoin Scripts: Efficient micro-payment

TX1

scriptPubKey
[OP_CHECKMULTISIG:
(2,2)-(𝑃𝐾 ,𝑃𝐾)]
n

TX2-1

scriptPubKey (B)
1

scriptPubKey (A)
n-1

scriptSig
(𝜎)A

B

TX2-2

scriptPubKey (B)
2

scriptPubKey (A)
n-2

scriptSig
(𝜎)

TX2-k

scriptPubKey (B)
k

scriptPubKey (A)
n-k

scriptSig
(𝜎)

TX1-R

scriptPubKey(A)
n

Lock:t
scriptSig
(𝜎)
(𝜎)

3. Bitcoin Scripts: Lock Time

1. Alice creates a MULTISIG transaction paying the maximum amount Alice
would ever need to spend to an output, which requires both Alice and Bob
to sign to release the coins. The transaction is published to the blockchain.

 Before publishing the MULTISIG transaction, Alice ask Bob to sign a
transaction which refunds all of Alice’s money back to her, but the refund is
“locked” until some time in the future. Alice also sign this refund transaction
and hold on to it. Then Alice publish the MULTISIG transaction to the
blockchain.

2. After the first minute that Alice has used the service, she signs a transaction
spending those coins that were sent to the MULTISIG address, sending one
unit of payment to Bob and returning the rest to Alice.

3. After the next minute of using the service, Alice signs another transaction,
this time paying two units to Bob and sending the rest to herself.

4. …… Alice will keep sending these transactions to Bob every minute that
she uses the service. (These transactions are not signed by Bob, nor are
they being published to the blockchain.)

3. Bitcoin Scripts: Lock Time

 Eventually, Alice will finish using the service, and tells Bob, “I’m done,
please cut off my service.” At this point Alice will stop signing additional
transactions. Alice publish the refund transaction to the bitcoin network, with
the lock time parameter telling the miners not to publish the transaction until
the specified lock time. The transaction will be invalid before either a
specific block number, or a specific point in time, based on the timestamps
that are put into blocks.

 Bob will disconnect the service, and will take that last transaction that Alice
sent him, sign it, and publish that to the block chain.

 The final transaction that Bob redeems pays him in full for the service
that he provided and returns the rest of the money to Alice.

 if Bob does not sign a transaction to redeem pays for his service before the
refund transaction becomes valid, all the escrowed amount will be sent
back to Alice.

 If Bob honestly sign a transaction to redeem pays to him, the refund
transaction will become a double-spending transaction, and miners will
discarded it.

3. Bitcoin Scripts: Lock Time

Summary
 1. What is Bitcoin

 2. Transaction in Bitcoin

 3. Bitcoin Scripts

25

