Questions:

1. **SSL** Consider the SSL protocol shown below (with $K = h(S, R_A, R_B)$):

- 1. $A \rightarrow B$: R_A 2. $A \leftarrow B$: $Cert_B, R_B$ 3. $A \rightarrow B$: $\{S\}_B, E(K, h(msgs || K))$ 4. $A \leftarrow B$: h(msgs || K)5. $A \leftrightarrow B$: Data encrypted under K
- (a) In step 3, if we change E(K, h(msgs || K)) to h(msgs || K), will the protocol still be secure?
- (b) What exactly is the purpose of the message E(K, h(msgs || K)) sent in step 3?
- (c) If we remove this part in step 3, i.e., if we changed step 3 to

3. $A \rightarrow B : \{S\}_B$

Would the protocol still be secure?

2. **IKE (1)** In IKE Phase 1 digital-signature-based aggressive mode (see below), proof_A and proof_B are signed by Alice and Bob, respectively. However, in IKE Phase 1 public-keyencryption-based aggressive mode, proof_A and proof_B are neither signed nor encrypted. Explain why they can still securely perform the authentication.

> 1. $A \rightarrow B$: CP, $g^a \mod p$, {"Alice"}_{Bob}, { R_A }_{Bob} 2. $A \leftarrow B$: CS, $g^b \mod p$, {"Bob"}_{Alice}, { R_B }_{Alice}, proof_B 3. $A \rightarrow B$: proof_A

 $proof_A = h(SKEYID, g^a \mod p, g^b \mod p, CP, "Alice")$ SKEYID = $h(g^{ab} \mod p, R_A, R_B)$

3. **IKE (2)** Imagine you have a key exchange protocol similar to main mode in IKE Phase 1, but adding an additional piece of data ("cookies", C_A and C_B) to the message flow:

1.
$$A \rightarrow B$$
 : CP, C_A
2. $A \leftarrow B$: CS, C_A, C_B
3. $A \rightarrow B$: $g^a \mod p, R_A, C_A, C_B$
4. $A \leftarrow B$: $g^b \mod p, R_B, C_A, C_B$
5. $A \rightarrow B$: E(K, "Alice" || proof_A)
6. $A \leftarrow B$: E(K, "Bob" || proof_B)
7. $A \leftrightarrow B$: Data encrypted under K

The cookies are in the form

$$C_x = h(K_x, \operatorname{IP}_{peer}, \operatorname{timestamp})$$

where K_x is a secret key only known to the party creating the cookie and IP_{peer} is the IP address of the peer (i.e., Alice would put Bob's IP and vice versa).

- (a) What are the reasons for including such cookies in the exchange?
- (b) The function of these cookies has to be effective before the exchange reaches step 5, otherwise B could be in trouble. Can you explain why?
- 4. **IKE (3)** IKE Phase 1 signature-based main mode has 6 moves, while the aggressive mode has 3 moves only.
 - (a) Give two advantages of the main mode over the aggressive mode.
 - (b) Give one disadvantage of the main mode over the aggressive mode.