Questions:

1. Euclidean Algorithm (15 points):

(a) Determine whether 227 and 79 are relatively prime.
(b) Determine whether 22337 and 17241 are relatively prime.

2. Extended Euclidean Algorithm (15 points):

(a) Find the multiplicative inverse of $4565 \bmod 15447$.
(b) Without calculating anything, by simply looking at the numbers, can you tell whether $7932 \bmod 11458$ has a multiplicative inverse? Explain.
3. Euler Phi Function (10 points):
(a) Show the steps of how to calculate $\phi(210)$.

4. Fermat's Little Theorem/Euler's Generalization (15 points):

(a) Show how to calculate $227^{54996213}$ mod 21 using Euler's generalization.

5. Modular Exponentiation (20 points)

(a) Calculate $17^{27} \bmod 23$ using the square and multiply method.
(b) Consider the following two cases of raising a number to a certain exponent:

- $a^{65535} \bmod b$
- $a^{65537} \bmod b$

Using the square and multiply method, which one of these two exponentiations will be significantly more expensive? Why? Calculate the total number of modular multiplications required for each case (counting a squaring operation as a modular multiplication).
6. Group (10 points)
(a) Which of the following sets form a multiplicative group? How can you tell?

- $\mathbb{Z}_{11} \backslash\{0\}$
- $\mathbb{Z}_{15} \backslash\{0\}$
- $\mathbb{Z}_{69} \backslash\{0\}$
- $\mathbb{Z}_{79} \backslash\{0\}$

7. Cyclic Group ($\mathbf{1 5}$ points) Determine whether the following groups are cyclic. If they are, give a generator of the group.

- $\left(\mathbb{Z}_{5},+\right)$ (i.e., the set of numbers modulo 5 with addition as the group operation)
- $\left(\mathbb{Z}_{8}^{*}, *\right)$
- $\left(\mathbb{Z}_{13}^{*}, *\right)$

