Questions:

- 1. Euclidean Algorithm (15 points):
 - (a) Determine whether 227 and 79 are relatively prime.
 - (b) Determine whether 22337 and 17241 are relatively prime.

2. Extended Euclidean Algorithm (15 points):

- (a) Find the multiplicative inverse of 4565 mod 15447.
- (b) Without calculating anything, by simply looking at the numbers, can you tell whether 7932 mod 11458 has a multiplicative inverse? Explain.

3. Euler Phi Function (10 points):

(a) Show the steps of how to calculate $\phi(210)$.

4. Fermat's Little Theorem/Euler's Generalization (15 points):

(a) Show how to calculate $227^{54996213} \mod 21$ using Euler's generalization.

5. Modular Exponentiation (20 points)

- (a) Calculate $17^{27} \mod 23$ using the square and multiply method.
- (b) Consider the following two cases of raising a number to a certain exponent:
 - $a^{65535} \mod b$
 - $a^{65537} \mod b$

Using the square and multiply method, which one of these two exponentiations will be significantly more expensive? Why? Calculate the total number of modular multiplications required for each case (counting a squaring operation as a modular multiplication).

6. Group (10 points)

- (a) Which of the following sets form a multiplicative group? How can you tell?
 - $\mathbb{Z}_{11} \setminus \{0\}$
 - $\mathbb{Z}_{15} \setminus \{0\}$
 - $\mathbb{Z}_{69} \setminus \{0\}$
 - $\mathbb{Z}_{79} \setminus \{0\}$
- 7. Cyclic Group (15 points) Determine whether the following groups are cyclic. If they are, give a generator of the group.
 - $(\mathbb{Z}_5, +)$ (i.e., the set of numbers modulo 5 with addition as the group operation)
 - $(\mathbb{Z}_{8}^{*}, *)$
 - $(\mathbb{Z}_{13}^*, *)$