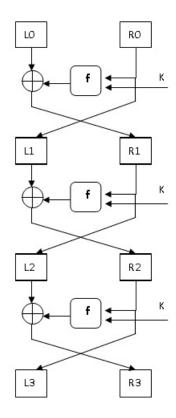
Network Security Technology	Spring, 2019
Tutorial 1, Week 2 (March 6)	LIU Zhen
Due Date: March 20	

Questions:


1. One-Time Pad (20 points):

(a) Alice wants to send the message SECURE to Bob using a one-time pad with the value KTXMLU. What is the ciphertext?

Hint: First convert the letters into numbers (with binary form) using the table below. Note that all letters should have the same binary length.

A	В	\sim	D	E	F	G	H	I	J	K	L	M	N	Ο	P
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Q	R	S	Т	U	V	W	X	Y	Z	,		?	!	%	#

- (b) What is the plaintext you get if you decrypt the ciphertext from 1a with the key XDMBRO?
- (c) Assume a key K is used twice for encrypting two different plaintexts M_1 and M_2 . Show what information about the plaintexts an adversary can gain just by looking at the two cipertexts C_1 and C_2 .
- 2. **DES(20 points)**: Consider a simplified DES with only 3 rounds. Suppose that you are given the key K and a ciphertext (L_3, R_3) . Show how to compute the plaintext (L_0, R_0) .

3. **3DES (20 points)**: Consider 3DES:

$$C = \mathrm{DES}_{K_1}(\mathrm{DES}_{K_2}^{-1}(\mathrm{DES}_{K_1}(M)))$$

where C, M are the ciphertext and plaintext, respectively, and $K = (K_1, K_2)$ is the key.

- (a) How many keys on average do we have to try in a brute force attack?
- (b) What's the effect if $K_1 = K_2$?
- 4. Block Cipher Modes (20 points): Suppose that we have a shift cipher with plaintext/message space specified in the table below. In other words, the space has 16 letters.

Suppose that the shift cipher is used as a block cipher which has 4-bit input and 4-bit output with the conversion between the letters and binary strings given in the table below.

Let the key be k=2. Encrypt the plaintext P=IAMBOB using CBC mode with IV=0010.

A	В	С	D	E	F	G	Н
0000	0001	0010	0011	0100	0101	0110	0111
Ι	J	K	L	M	N	O	Р

5. CTR Mode (20 points): Suppose a user with secret key K runs DES with CTR mode to encrypt data. (1) Discuss whether he need to worry that two IV's, say IV_1 and IV_2 , in two encryptions are too close so that $IV_2 = IV_1 + j$ for some j. (2) Discuss whether he needs to worry IV + i equals to IV for some large i.

Hint: Note that IV is chosen randomly and uniformly.