Tutorial 1, Week 2 (March 6)
Due Date: March 20

Questions:

1. One-Time Pad (20 points):
(a) Alice wants to send the message SECURE to Bob using a one-time pad with the value KTXMLU. What is the ciphertext?
Hint: First convert the letters into numbers (with binary form) using the table below. Note that all letters should have the same binary length.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Q	R	S	T	U	V	W	X	Y	Z	,	\cdot	$?$	$!$	$\%$	$\#$
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

(b) What is the plaintext you get if you decrypt the ciphertext from 1a with the key XDMBRO?
(c) Assume a key K is used twice for encrypting two different plaintexts M_{1} and M_{2}. Show what information about the plaintexts an adversary can gain just by looking at the two cipertexts C_{1} and C_{2}.
2. DES(20 points): Consider a simplified DES with only 3 rounds. Suppose that you are given the key K and a ciphertext $\left(L_{3}, R_{3}\right)$. Show how to compute the plaintext (L_{0}, R_{0}).

3. 3DES (20 points): Consider 3DES:

$$
C=\mathrm{DES}_{K_{1}}\left(\mathrm{DES}_{K_{2}}^{-1}\left(\operatorname{DES}_{K_{1}}(M)\right)\right)
$$

where C, M are the ciphertext and plaintext, respectively, and $K=\left(K_{1}, K_{2}\right)$ is the key.
(a) How many keys on average do we have to try in a brute force attack?
(b) What's the effect if $K_{1}=K_{2}$?
4. Block Cipher Modes (20 points): Suppose that we have a shift cipher with plaintext/message space specified in the table below. In other words, the space has 16 letters.

Suppose that the shift cipher is used as a block cipher which has 4-bit input and 4-bit output with the conversion between the letters and binary strings given in the table below.

Let the key be $k=2$. Encrypt the plaintext $P=$ IAMBOB using CBC mode with $\mathrm{IV}=0010$.

A	B	C	D	E	F	G	H
0000	0001	0010	0011	0100	0101	0110	0111
I	J	K	L	M	N	O	P
1000	1001	1010	1011	1100	1101	1110	1111

5. CTR Mode (20 points): Suppose a user with secret key K runs DES with CTR mode to encrypt data. (1) Discuss whether he need to worry that two IV's, say $I V_{1}$ and $I V_{2}$, in two encryptions are too close so that $I V_{2}=I V_{1}+j$ for some j. (2) Discuss whether he needs to worry $I V+i$ equals to $I V$ for some large i.
Hint: Note that $I V$ is chosen randomly and uniformly.
