A Brief Tutorial on Sparse Vector Technique

—— An Advanced Mechanism in Differential Privacy

- Recap of Differential Privacy
- Sparse Vector Technique
- Generalized SVT: An Enhanced Version [VLDB '17]
- Case Study 1: Mbeacon [NDSS '19]
- Case Study 2: PrivateSQL [VLDB '19]
- Case Study 3: Privacy-preserving Deep Learning [CCS '15]
- Lyu, M., Su, D., & Li, N. (2017). Understanding the sparse vector technique for differential privacy. Proceedings of the VLDB Endowment, 10(6), 637-648.
- Hagestedt, I., Zhang, Y., Humbert, M., Berrang, P., Tang, H., Wang, X., & Backes, M. (2019, February). MBeacon: Privacy-Preserving Beacons for DNA Methylation Data. In NDSS.
- Kotsogiannis, I., Tao, Y., He, X., Fanaeepour, M., Machanavajjhala, A., Hay, M., & Miklau, G. (2019). PrivateSQL: a differentially private SQL query engine. Proceedings of the VLDB Endowment, 12(11), 1371-1384.
- Shokri, R., & Shmatikov, V. (2015, October). Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications security (pp. 1310-1321).

Differential Privacy

- For every pair of inputs, say *D* and *D'*, which differ in one row, taking the output, the likelihood ratio between observing *D* and *D'* is bounded by e^{ϵ} .
 - Namely, the adversary cannot distinguish *D* and *D*'based on the output *O*.

* ϵ is called the privacy budget, a smaller ϵ indicates better privacy but often worse data utility.

• Exponential Mechanism

- Answering non-numerical queries such as "most popular fruit" (Table 1).
- Consider the "utility score" of a response: $u: N^{|D|} \times Range \rightarrow R$.
 - The utility score reflect the users' preference to the items.

Exponential Mechanism:	Table 1. An Example for Exponential Mechanism.				
$M_E(x, u, Range)$ selects and outputs an element $r \in Range$ with prob.	Category	Utility Score $\Delta u = 1$	Pr[Response]		
			$\epsilon = 0$	$\epsilon = 0.1$	$\epsilon = 1$
proportional to $\exp(\frac{\epsilon u(x,r)}{2\Delta u})$.	Apple	30	0.25	0.424	0.924
	Orange	25	0.25	0.330	0.075
	Pear	8	0.25	0.141	1.5E-05
	Pineapple	2	0.25	0.105	7.7E-07

Table 1. An Example for Exponential Mechanism.

McSherry, F., & Talwar, K. (2007, October). Mechanism design via differential privacy. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07) (pp. 94-103). IEEE.

- Motivating Example
 - Consider a very large number, say k, of queries to answer. If using Laplace mechanism, ε would be proportional to k.
 - But what if the data analyst believe only a few queries are significant, and will take value above a certain threshold?

Significant queries Insignificant queries

- Goal and Intuition:
 - Saving privacy budget.
 - Add less noise to achieve the same level of privacy.
 - Answer insignificant queries (with negative results) "for free".
 - Only gives "positive/negative" response, not the noisy value.
 - The answer is *sparse*.

Hardt, M., & Rothblum, G. N. (2010, October). A multiplicative weights mechanism for privacy-preserving data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS'10) (pp. 61-70). IEEE.

- Algorithm 1. Basic Sparse Vector Technique.
 - Input: A private database *D*, a stream of queries $Q = q_1, q_2, ...$ each with sensitivity no more than Δ , a sequence of thresholds $T = T_1, T_2, ...$, and the number *c* of queries to expect positive answers.
 - Output: A vector of indicators $A = a_1, a_2, ...,$ where each $a_i \in \{\top, \bot\}$.

T - positive $\bot - negative$

```
Input: D, Q, \Delta, \mathbf{T} = T_1, T_2, \cdots, c.

1: \epsilon_1 = \epsilon/2, \ \rho = \text{Lap}(\Delta/\epsilon_1)

2: \epsilon_2 = \epsilon - \epsilon_1, \ \text{count} = 0

3: for each query q_i \in Q do

4: \nu_i = \text{Lap}(2c\Delta/\epsilon_2)

5: if q_i(D) + \nu_i \ge T_i + \rho then

6: Output a_i = \top

7: count = count + 1, Abort if count \ge c.

8: else

9: Output a_i = \bot
```

^{*} Note that now we discuss SVT in an interactive setting.

- Algorithm 1. Basic Sparse Vector Technique.
 - Input: A private database *D*, a stream of queries $Q = q_1, q_2, ...$ each with sensitivity no more than Δ , a sequence of thresholds $T = T_1, T_2, ...$, and the number *c* of queries to expect positive answers.
 - Output: A vector of indicators $A = a_1, a_2, ...,$ where each $a_i \in \{\top, \bot\}$.

 \top — positive \perp — negative

^{*} Note that now we discuss SVT in an interactive setting.

- Algorithm 1. Basic Sparse Vector Technique.
 - Input: A private database *D*, a stream of queries $Q = q_1, q_2, ...$ each with sensitivity no more than Δ , a sequence of thresholds $T = T_1, T_2, ...$, and the number *c* of queries to expect positive answers.
 - Output: A vector of indicators $A = a_1, a_2, ...,$ where each $a_i \in \{\top, \bot\}$.

* Note that now we discuss SVT in an interactive setting.

- Analysis
 - **Theorem.** Algorithm 1 satisfies ϵ -DP.

$$Pr[M(D) = S] \le e^{\epsilon} Pr[M(D') = S]$$

• Analysis

•

• **Theorem.** Algorithm 1 satisfies ϵ -DP.

Proof. Consider any
$$a_i \in \{\top, \bot\}^l$$
. Let $a = \langle a_1, ..., a_l \rangle$, $I_{\top} = \{i: a_i = \top\}$, and $I_{\bot} = \{i: a_i = \bot\}$. Let
 $f_i(D, z) = \Pr[q_i(D) + \nu_i \langle T_i + z]$

$$g_i(D, z) = \Pr[q_i(D) + \nu_i \ge T_i + z].$$

• We have:

$$\begin{aligned} \Pr[\mathcal{A}(D) = \boldsymbol{a}] &= \int_{-\infty}^{\infty} \Pr[\rho = z] \prod_{i \in \mathbf{I}_{\top}} \Pr[q_i(D) + \nu_i \ge T_i + z] \\ &\prod_{i \in \mathbf{I}_{\perp}} \Pr[q_i(D) + \nu_i < T_i + z] dz \end{aligned}$$
 Integrate all possible values for ρ , the noise added to the threshold.
$$&= \int_{-\infty}^{\infty} \Pr[\rho = z] \prod_{i \in \mathbf{I}_{\top}} \Pr[q_i(D) + \nu_i \ge T_i + z] dz \end{aligned}$$
 The same logic for D' .
$$&\times \int_{-\infty}^{\infty} \Pr[\rho = z] \prod_{i \in \mathbf{I}_{\perp}} \Pr[q_i(D) + \nu_i < T_i + z] dz \end{aligned}$$

 $Pr[M(D) = S] \le e^{\epsilon} Pr[M(D') = S]$

- Analysis
 - Proof. (Cont.)

$$\begin{aligned} &\frac{\Pr[\mathcal{A}(D) = \mathbf{a}]}{\Pr[\mathcal{A}(D') = \mathbf{a}]} \\ &= \frac{\int_{-\infty}^{\infty} \Pr[\rho = z]}{\int_{-\infty}^{\infty} \Pr[\rho = z]} \prod_{i \in \mathbf{I}_{\perp}} f_i(D, z) \prod_{i \in \mathbf{I}_{\top}} g_i(D, z) dz \\ &= \frac{\int_{-\infty}^{\infty} \Pr[\rho = z]}{\int_{-\infty}^{\infty} \Pr[\rho = z]} \prod_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz \\ &= \frac{\int_{-\infty}^{\infty} \Pr[\rho = z - \Delta]}{\int_{-\infty}^{\infty} \Pr[\rho = z]} \prod_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz \\ &\leq \frac{\int_{-\infty}^{\infty} e^{\epsilon_1} \Pr[\rho = z]}{\int_{-\infty}^{\infty} \Pr[\rho = z]} \prod_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D, z - \Delta) dz \\ &\leq \frac{\int_{-\infty}^{\infty} e^{\epsilon_1} \Pr[\rho = z]}{\int_{-\infty}^{\infty} \Pr[\rho = z]} \prod_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz \\ &\leq \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\int_{-\infty}^{\infty} \Pr[\rho = z]} \prod_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz \\ &\leq \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\int_{-\infty}^{\infty} \Pr[\rho = z]} \prod_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\top}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\perp}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\perp}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\perp}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\perp}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp}} f_i(D', z) \prod_{i \in \mathbf{I}_{\perp}} g_i(D', z) dz} \\ &\Rightarrow \frac{\sum_{i \in \mathbf{I}_{\perp}}^{\infty} \Pr[\rho = z]}{\sum_{i \in \mathbf{I}_{\perp} f_i(D', z) \prod_{i \in \mathbf{I}_{\perp}} g_i(D', z) dz}$$

$$f_i(D, z) = \Pr[q_i(D) + \nu_i < T_i + z]$$

$$g_i(D, z) = \Pr[q_i(D) + \nu_i \ge T_i + z].$$

- Analysis
 - Proof. (Cont.)

$$\frac{\Pr[\mathcal{A}(D) = \boldsymbol{a}]}{\Pr[\mathcal{A}(D') = \boldsymbol{a}]}$$

last page.

- Analysis
 - Proof. (Cont.)

$$\begin{split} g_i(D, z - \Delta) &= \Pr[q_i(D) + \nu_i \ge T_i + z - \Delta] \\ &\leq \Pr\left[q_i(D') + \Delta + \nu_i \ge T_i + z - \Delta\right] \\ &= \Pr\left[q_i(D') + \nu_i \ge T_i + z - 2\Delta\right] \\ &\leq e^{\frac{\epsilon_2}{c}} \Pr\left[q_i(D') + \nu_i \ge T_i + z\right] \\ &= e^{\frac{\epsilon_2}{c}} g_i(D', z). \end{split}$$

 $f_i(D, z) = \Pr[q_i(D) + \nu_i < T_i + z]$ $g_i(D, z) = \Pr[q_i(D) + \nu_i \ge T_i + z].$

Global sensitivity, by definition: $q_i(D') - \Delta \le q_i(D) \le q_i(D') + \Delta.$

•
$$v_i$$
 is sampled from $Lap(\frac{2c\Delta}{\epsilon_2})$.

$$f_i(D, z - \Delta) = \Pr[q_i(D) + v_i < T_i + z - \Delta]$$

$$\leq \Pr[q_i(D') - \Delta + v_i < T_i + z - \Delta]$$

$$\leq \Pr[q_i(D') + v_i < T_i + z] = f_i(D', z)$$

Same logic for $f_i(D, z - \Delta)$.

Herewith we finish the proof.

• Algorithm 2. Generalized SVT in [VLDB '17].

Input: $D, Q, \Delta, \mathbf{T} = T_1, T_2, \cdots, c$ and ϵ_1, ϵ_2 and ϵ_3 . **Output:** A stream of answers a_1, a_2, \cdots 1: $\rho = \text{Lap}\left(\frac{\Delta}{\epsilon_1}\right)$, count = 0 for Each query $q_i \in Q$ do 2: $u_i = \mathsf{Lap}\left(\frac{2c\Delta}{\epsilon_2}\right)$ 3: 4: if $q_i(D) + \nu_i \ge T_i + \rho$ then 5: if $\epsilon_3 > 0$ then **Output** $a_i = q_i(D) + \mathsf{Lap}\left(\frac{c\Delta}{\epsilon_3}\right)$ 6: 7: else 8: **Output** $a_i = \top$ 9: count = count + 1, **Abort** if count $\geq c$. 10: else **Output** $a_i = \bot$ 11:

Theorem. Algorithm 2 satisfies $(\epsilon_1 + \epsilon_2 + \epsilon_3)$ -DP.

Part 1. $(\epsilon_1 + \epsilon_2)$ -DP as shown in analysis of Algorithm 1.

Part 2. If provide noisy answer, then consume ϵ_3 -DP.

^{*} Part 2 is taken into account in algorithm 2 because in many variants of SVT they output the noisy answers. This part is to explicitly show that outputting noisy answers needs additional privacy budget.

- Budget Allocation
 - Different strategy in allocating $\epsilon_1 + \epsilon_2$ results in different Accuracy.
 - Recap the comparing part of SVT:

$$q_i(D) + Lap\left(\frac{2c\Delta}{\epsilon_2}\right) \ge T + Lap(\frac{\Delta}{\epsilon_1})$$

• If minimize the variance of $Lap\left(\frac{\Delta}{\epsilon_1}\right) - Lap(\frac{2c\Delta}{\epsilon_2})$, we can optimize the accuracy without sacrificing privacy. That is:

min
$$\left[2\left(\frac{\Delta}{\epsilon_1}\right)^2 + 2\left(\frac{2c\Delta}{\epsilon_2}\right)^2\right]$$

s.t. $\epsilon_1 + \epsilon_2 = t$

• Solve it and you can get $\epsilon_1: \epsilon_2 = 1: (2c)^{2/3}$

^{*} Note that in the optimization problem, *t* denotes a fixed constant, which in fact, is $\epsilon - \epsilon_3$.

- SVT for Monotonic Queries (MQ)
 - MQ*: for any changes from *D* to *D'*, the change in answers of all queries is in the same direction (i.e. either $\forall_i q_i(D) \ge q_i(D')$, or $\forall_i q_i(D) \le q_i(D')$).
 - For monotonic queries, the optimization of privacy budget allocation becomes $\epsilon_1: \epsilon_2 = 1: c^{2/3}$.
- SVT vs. EM
 - In a non-interactive setting, EM can achieve the same goal.
 - Runs EM *c* times, each with budget $\frac{\epsilon}{c}$; the quality of the query is its answer; each query is selected with prob. proportional to $\exp(\frac{\epsilon}{2c\Delta})$.
 - EM can be proven to achieve better accuracy.

^{*} This is common in the data mining field, e.g. using SVT for frequent itemset mining.

Recommendation from [VLDB '17]

• In interactive settings, use the generalized SVT with optimal privacy budget allocation.

- In non-interactive settings, do not use SVT and use EM instead.
 - If one gets better performance using SVT than using EM,
 - then it is likely that one's usage of SVT is *non-private*.

Lyu, M., Su, D., & Li, N. (2017). Understanding the sparse vector technique for differential privacy. Proceedings of the VLDB Endowment, 10(6), 637-648.

- Title: MBeacon: Privacy-Preserving Beacons* for DNA Methylation (甲基化) Data
 - Authors: Inken Hagestedt, Yang Zhang[†], Mathias Humbert, Pascal Berrang, Haixu Tang, XiaoFeng Wang, Michael Backes
 - In NDSS 2019, distinguished paper award
- Highlights:
 - Attacked a biomedical data search engine system.
 - Proposed defense mechanism based on a tailored SVT algorithm.

 Hagestedt, I., Zhang, Y., Humbert, M., Berrang, P., Tang, H., Wang, X., & Backes, M. (2019, February). MBeacon: Privacy-Preserving Beacons for DNA Methylation Data. In NDSS.

* A kind of molecular probe (分子探针), also the name of a search engine in this paper.

- Background
 - Methylation Data
 - A kind of important molecule located on DNA that influence cell life (on how to copy, express, etc.).
 - For privacy research, privacy breach exists since attacker may infer target's sensitive information (e.g. cancer, smokes, stressed).
 - Beacon system
 - A search engine for biomedical researchers that answers: *whether its database contains any record with the specified nucleotide* (核苷酸) at a given position
 - Only gives Yes/No response

- Modeling
 - DNA methylation data
 - A sequence of real numbers¹, each between 0-1, i.e. $m(v) \in R^{M}_{[0,1]}$.
 - Query type
 - Are there any patients with this methylation value at a specific methylation position?
 - → Are there any patients with methylation value above some threshold for a specific position?
 - $B_I: q \rightarrow \{0, 1\}, q \coloneqq (pos, val)$
 - Threat Model
 - Membership inference attack.
 - Adversary with access to the victim's methylation data m(v) aims to infer whether the victim is in a certain database. In this case, database is with specified disease tags.
 - A: $(m(v), B_I, K) \rightarrow \{0, 1\}, K$ denotes some additional knowledge (i.e. means and std deviations of the general population at the methylation positions).

1. Each value represents the fraction of methylated dinucleotides (二核苷酸) at this position.

- Defense Mechanism
 - Intuition
 - Adversary successfully attacks the system, iff the output of the query deviate his background knowledge, which means he learns additional info from the query.
 - According to biomedical research, only a few methylation regions differ from the general population. —— Sparse vector technique.

* α_i is the number of patients in the MBeacon that corresponds to the query q_i ; β_i is the estimated number of patients given by the general population.

Defense Mechanism

- Part 1. Tailored SVT (right figure).
- Part 2. Transform SVT result to MBeacon results (left figure).

Input: base threshold T, privacy parameters ϵ_1 , ϵ_2 and c, query sensitivity Δ , query vector Q, database ${\mathbb I}$ and prior frequency ${\mathsf P}$ **Result:** sanitized MBeacon responses $B_{\mathbb{I}}(\vec{Q})$ $\mathbf{1} \ \overrightarrow{R} = \mathcal{A}(T, \epsilon_1, \epsilon_2, c, \Delta, \overrightarrow{Q}, \mathbb{I}, \mathbb{P}) ;$ **2** for each query q_i in \overrightarrow{Q} do get r_i from \vec{R} ; get β_i from P; 3 if $r_i = \bot$ then 4 $B_{\mathbb{I}}(q_i) = \beta_i \ge T;$ 5 else 6 $B_{\mathbb{I}}(q_i) = \neg(\beta_i \ge T);$ 7 end 8 9 end

Input: base threshold T, privacy parameters ϵ_1, ϵ_2 and c, query sensitivity Δ , query vector \vec{Q} , database \mathbb{I} and prior frequency P **Result:** sanitized responses R such that $r_i \in \{\bot, \top\}$ for each *i* 1 $z_1 = \text{LAP}(\frac{\Delta}{\epsilon_1}); \quad z_2 = \text{LAP}(\frac{\Delta}{\epsilon_1});$ 2 count = 0: **3 for** each query q_i in \overrightarrow{Q} **do** $y_i = \operatorname{LAP}(\frac{2c\Delta}{\epsilon_2}); \quad y'_i = \operatorname{LAP}(\frac{2c\Delta}{\epsilon_2});$ get α_i from \mathbb{I} and β_i from P; 5 **if** $(\alpha_i + y_i < T + z_1 \text{ and } \beta_i + y_i < T + z_1)$ or $(\alpha_i + y'_i \ge T + z_2 \text{ and } \beta_i + y'_i \ge T + z_2)$ then $r_i = \perp$: 7 8 else $r_i = \top;$ 9 count = count + 1; 10 $z_1 = \operatorname{LAP}(\frac{\Delta}{\epsilon_1}); \quad z_2 = \operatorname{LAP}(\frac{\Delta}{\epsilon_1});$ 11 end 12 if $count \ge c$ then 13 Halt 14 end 15 16 end

- Title: PrivateSQL: A Differentially Private SQL Query Engine
 - Authors: Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanavajjhala , Michael Hay, Gerome Miklau
 - In VLDB 2019
- Highlights
 - System work an end-to-end differentially private relational database system is proposed, which supports a rich class of SQL queries.
 - Automatically calculating sensitivity and adding noise.
 - Answering complex SQL counting queries under a fixed privacy budget by generating <u>private synopses</u>.

[•] Kotsogiannis, I., Tao, Y., He, X., Fanaeepour, M., Machanavajjhala, A., Hay, M., & Miklau, G. (2019). PrivateSQL: a differentially private SQL query engine. Proceedings of the VLDB Endowment, 12(11), 1371-1384.

Case study 2: PrivateSQL

- Design Goals:
 - Workloads:
 - The system should answer a workload of queries with bounded privacy loss.

Private Synopses

- Complex Queries:
 - Each query in the workload can be a complex SQL expression over multiple relations.
 Privacy Policies
- Multi-resolution Privacy:
 - The system should allow the data owner to specify which entities in the database require protection.

Case study 2: PrivateSQL

- Architecture
 - Two main phases
 - Phase 1. Synopsis Generation.
 - Phase 2. Query Answering.

A **synopsis** captures important statistical information about the database.

A **view** is interpreted as a relational algebra expression.

Case study 2: PrivateSQL

- Architecture
 - Two main phases
 - Phase 1. Synopsis Generation.
 - Phase 2. Query Answering.

<u>Challenge.</u> 1. hard to compute the global sensitivity of a SQL view; 2. some operation may yield unbounded numbers of tuples.

> Solution. 1. learn a threshold from data; 2. adopt Truncation operator to bound the join size by throwing away join keys above the threshold.

A **synopsis** captures important statistical information about the database.

A **view** is interpreted as a relational algebra expression.

* SVT is used as a sub-routine to calculate the threshold from the data.

- Title: Privacy-preserving Deep Learning
 - Authors: Reza Shokri, Vitaly Shmatikov
 - In CCS 2015

- Highlights
 - Early system work in considering user data privacy for deep learning.
 - A mechanism called distributed selective SGD (DSSGD) is proposed.
 - Efforts in analysis and mitigation of privacy leakage, using differential privacy for privacy-preserving deep learning.

Shokri, R., & Shmatikov, V. (2015, October). Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications security (pp. 1310-1321).

- Private-by-design
 - Preventing direct leakage
 - while training user do not reveal data to others
 - while using user can use the model locally
 - Preventing indirect leakage DP!
 - noise is added to gradients to prevent leakage of information related to local dataset

- Private-by-design
 - Preventing direct leakage
 - while training user do not reveal data to others
 - while using user can use the model locally
 - Preventing indirect leakage DP!
 - noise is added to gradients to prevent leakage of information related to local dataset

Potential privacy leakage:

- 1. How gradients are selected for sharing
- 2. The actual values of the shared gradients
- \rightarrow SVT!

- The algorithm for differentially private DSSGD for user *i*.
 - Sparse vector technique is used to:
 - (i) randomly select a small subset of gradients whose values are above a threshold, and then,
 - (ii) share perturbed values of the selected gradients in a differentially private manner.
 - Note that SVT here can be replaced by EM due to non-interactiveness.

- Let ϵ be the total privacy budget for one epoch of participant *i* running DSSGD, and let Δf be the sensitivity of each gradient
- Let $c = \theta_u |\Delta \mathbf{w}|$ be the maximum number of gradients that can be uploaded in one epoch
- Let $\epsilon_1 = \frac{8}{9}\epsilon, \epsilon_2 = \frac{2}{9}\epsilon$
- Let $\sigma(x) = \frac{2c\Delta f}{x}$
- 1. Generate fresh random noise $r_{\tau} \sim \text{Lap}(\sigma(\epsilon_1))$
- 2. Randomly select a gradient $\Delta w_j^{(i)}$
- 3. Generate fresh random noise $r_w \sim \text{Lap}(2\sigma(\epsilon_1))$
- 4. If $abs(bound(\Delta w_j^{(i)}, \gamma)) + r_w \ge \tau + r_{\tau}$, then
 - (a) Generate fresh random noise $r'_w \sim \operatorname{Lap}(\sigma(\epsilon_2))$
 - (b) Upload bound $(\Delta w_j^{(i)} + r'_w, \gamma)$ to the parameter server
 - (c) Charge $\frac{\epsilon}{c}$ to the privacy budget
 - (d) If number of uploaded gradients is equal to c, then Halt Else Goto Step 1
- 5. Else Goto Step 2