
A Brief Tutorial on Sparse Vector Technique
—— An Advanced Mechanism in Differential Privacy



• Recap of Differential Privacy

• Sparse Vector Technique

• Generalized SVT: An Enhanced Version [VLDB ’17]

• Case Study 1: Mbeacon [NDSS ’19]

• Case Study 2: PrivateSQL [VLDB ’19]

• Case Study 3: Privacy-preserving Deep Learning [CCS ’15]
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• For every pair of inputs, say 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝐷, which differ in one row, taking the 
output, the likelihood ratio between observing 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝐷 is bounded by 𝑒𝑒𝜖𝜖.

• Namely, the adversary cannot distinguish 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷′based on the output 𝑂𝑂.

Differential Privacy

Sensitivity: 
Δ = max |𝑞𝑞 𝐷𝐷 − 𝑞𝑞(𝐷𝐷𝐷)|

Ratio Bound: 
𝑃𝑃𝑃𝑃[𝑀𝑀 𝐷𝐷 = 𝑆𝑆]
Pr[𝑀𝑀 𝐷𝐷′ = 𝑆𝑆] ≤ 𝑒𝑒𝜖𝜖

𝝐𝝐-DP:

𝑃𝑃𝑃𝑃 𝑀𝑀 𝐷𝐷 = 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖𝑃𝑃𝑃𝑃[𝑀𝑀 𝐷𝐷𝐷 = 𝑆𝑆]

Laplace Mechanism:

𝑀𝑀𝐿𝐿 𝑥𝑥, 𝑞𝑞 · , 𝜖𝜖 = 𝑞𝑞 𝑥𝑥 + 𝐿𝐿𝑎𝑎𝐿𝐿(
Δ
𝜖𝜖)

* 𝜖𝜖 is called the privacy budget, a smaller 𝜖𝜖 indicates better privacy but often worse data utility. 



• Exponential Mechanism
• Answering non-numerical queries such as “most popular fruit” (Table 1).

• Consider the “utility score” of a response: 𝑢𝑢:𝑁𝑁|𝐷𝐷| × 𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑒𝑒 → 𝑅𝑅.
• The utility score reflect the users’ preference to the items.

Differential Privacy

McSherry, F., & Talwar, K. (2007, October). Mechanism design via differential privacy. In 48th Annual IEEE Symposium on 
Foundations of Computer Science (FOCS'07) (pp. 94-103). IEEE.

Category Utility Score
Δu = 1

𝑃𝑃𝑃𝑃[𝑅𝑅𝑒𝑒𝑅𝑅𝐿𝐿𝑅𝑅𝑎𝑎𝑅𝑅𝑒𝑒]
𝜖𝜖 = 0 𝜖𝜖 = 0.1 𝜖𝜖 = 1

Apple 30 0.25 0.424 0.924

Orange 25 0.25 0.330 0.075

Pear 8 0.25 0.141 1.5E-05

Pineapple 2 0.25 0.105 7.7E-07

Table 1. An Example for Exponential Mechanism.Exponential Mechanism:

𝑀𝑀𝐸𝐸 𝑥𝑥,𝑢𝑢,𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑒𝑒 selects and outputs 
an element 𝑃𝑃 ∈ 𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑒𝑒 with prob. 
proportional to exp(𝜖𝜖𝜖𝜖(𝑥𝑥,𝑟𝑟)

2Δ𝜖𝜖
).



• Motivating Example
• Consider a very large number, say k, of queries to answer. If using Laplace 

mechanism, 𝜖𝜖 would be proportional to 𝑘𝑘.

• But what if the data analyst believe only a few queries are 
significant, and will take value above a certain threshold?

• Goal and Intuition:
• Saving privacy budget.

• Add less noise to achieve the same level of privacy.
• Answer insignificant queries (with negative results) “for free”.

• Only gives “positive/negative” response, not the noisy value.
• The answer is sparse.

Sparse Vector Technique

Hardt, M., & Rothblum, G. N. (2010, October). A multiplicative weights mechanism for privacy-preserving data analysis. In 2010 
IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS’10) (pp. 61-70). IEEE.

Insignificant queries

Significant queries



• Algorithm 1. Basic Sparse Vector Technique.
• Input: A private database 𝐷𝐷, a stream of queries 𝑄𝑄 = 𝑞𝑞1,𝑞𝑞2, … each with sensitivity no more 

than Δ, a sequence of thresholds 𝑇𝑇 = 𝑇𝑇1,𝑇𝑇2, …, and the number 𝑐𝑐 of queries to expect 
positive answers.

• Output: A vector of indicators 𝐴𝐴 = 𝑎𝑎1,𝑎𝑎2, …, where each 𝑎𝑎𝑖𝑖 ∈ {⊤,⊥}.

Sparse Vector Technique

* Note that now we discuss SVT in an interactive setting.

⊤ — positive 
⊥ — negative
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⊤ — positive 
⊥ — negativeGenerate (the same) noise 𝜌𝜌

and add to each threshold.

Generate noise 𝑣𝑣𝑖𝑖 and add 
to each query 𝑞𝑞𝑖𝑖.



• Algorithm 1. Basic Sparse Vector Technique.
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Sparse Vector Technique

Generate (the same) noise 𝜌𝜌
and add to each threshold.

Generate noise 𝑣𝑣𝑖𝑖 and add 
to each query 𝑞𝑞𝑖𝑖.

Stop when the number of ⊤s 
outnumbers 𝑐𝑐.

* Note that now we discuss SVT in an interactive setting.

⊤ — positive 
⊥ — negative



• Analysis
• Theorem. Algorithm 1 satisfies 𝜖𝜖-DP. 

Sparse Vector Technique

𝑃𝑃𝑃𝑃 𝑀𝑀 𝐷𝐷 = 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖𝑃𝑃𝑃𝑃[𝑀𝑀 𝐷𝐷𝐷 = 𝑆𝑆]



• Analysis
• Theorem. Algorithm 1 satisfies 𝜖𝜖-DP. 
• Proof. Consider any 𝑎𝑎𝑖𝑖 ∈ ⊤,⊥ 𝑙𝑙 . Let 𝑎𝑎 = < 𝑎𝑎1, … ,𝑎𝑎𝑙𝑙 >, 𝐼𝐼⊤= {

}
𝑖𝑖: 𝑎𝑎𝑖𝑖 =

⊤ ,𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼⊥ = 𝑖𝑖:𝑎𝑎𝑖𝑖 = ⊥ . Let 

• We have:

Sparse Vector Technique

Integrate all possible values 
for 𝜌𝜌, the noise added to the 
threshold.

The same logic for 𝐷𝐷𝐷.

𝑃𝑃𝑃𝑃 𝑀𝑀 𝐷𝐷 = 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖𝑃𝑃𝑃𝑃[𝑀𝑀 𝐷𝐷𝐷 = 𝑆𝑆]



• Analysis
• Proof. (Cont.)

Sparse Vector Technique

The change of integration 
variable from 𝑧𝑧 to 𝑧𝑧 − Δ.

Since 𝜌𝜌 = 𝐿𝐿𝑎𝑎𝐿𝐿 Δ
𝜖𝜖1

,

Pr 𝜌𝜌 = 𝑧𝑧 − Δ ≤ 𝑒𝑒𝜖𝜖1 Pr 𝜌𝜌 = 𝑧𝑧 .
We leave 𝑓𝑓𝑖𝑖 𝐷𝐷, 𝑧𝑧 − Δ ≤ 𝑓𝑓𝑖𝑖 𝐷𝐷𝐷, 𝑧𝑧
later.



• Analysis
• Proof. (Cont.)

Sparse Vector Technique

The result from last page.

𝑅𝑅𝑖𝑖 𝐷𝐷, 𝑧𝑧 − Δ ≤ 𝑒𝑒
𝜖𝜖2
𝑐𝑐 𝑅𝑅𝑖𝑖(𝐷𝐷′, 𝑧𝑧),

we will show this later.

We have at most 𝑐𝑐 positive 
outcomes, i.e. 𝐼𝐼⊤ ≤ 𝑐𝑐.



• Analysis
• Proof. (Cont.)

Sparse Vector Technique

Global sensitivity, by definition: 
𝑞𝑞𝑖𝑖 𝐷𝐷′ − Δ ≤ 𝑞𝑞𝑖𝑖 𝐷𝐷 ≤ 𝑞𝑞𝑖𝑖 𝐷𝐷′ + Δ.

𝑣𝑣𝑖𝑖 is sampled from 𝐿𝐿𝑎𝑎𝐿𝐿(2𝑐𝑐Δ
𝜖𝜖2

).

Herewith we finish the proof.

𝑓𝑓𝑖𝑖 𝐷𝐷, 𝑧𝑧 − Δ = Pr 𝑞𝑞𝑖𝑖 𝐷𝐷 + 𝑣𝑣𝑖𝑖 < 𝑇𝑇𝑖𝑖 + 𝑧𝑧 − Δ

≤ Pr 𝑞𝑞𝑖𝑖 𝐷𝐷′ − Δ + 𝑣𝑣𝑖𝑖 < 𝑇𝑇𝑖𝑖 + 𝑧𝑧 − Δ

≤ Pr 𝑞𝑞𝑖𝑖 𝐷𝐷′ + 𝑣𝑣𝑖𝑖 < 𝑇𝑇𝑖𝑖 + 𝑧𝑧 = 𝑓𝑓𝑖𝑖 𝐷𝐷𝐷, 𝑧𝑧

Same logic for 𝑓𝑓𝑖𝑖 𝐷𝐷, 𝑧𝑧 − Δ .



• Algorithm 2. Generalized SVT in [VLDB ’17].

Generalized SVT

Theorem. Algorithm 2 
satisfies (𝜖𝜖1+ 𝜖𝜖2+ 𝜖𝜖3)-DP. 

Part 2.  If provide noisy 
answer, then consume 𝜖𝜖3-DP. 

Part 1. (𝜖𝜖1+ 𝜖𝜖2)-DP as shown 
in analysis of Algorithm 1.

* Part 2 is taken into account in algorithm 2 because in many variants of SVT they output the noisy answers. This part is to 
explicitly show that outputting noisy answers needs additional privacy budget. 



• Budget Allocation
• Different strategy in allocating 𝜖𝜖1+ 𝜖𝜖2 results in different Accuracy.
• Recap the comparing part of SVT:

• If minimize the variance of 𝐿𝐿𝑎𝑎𝐿𝐿 Δ
𝜖𝜖1

− 𝐿𝐿𝑎𝑎𝐿𝐿(2𝑐𝑐Δ
𝜖𝜖2

), we can optimize the 
accuracy without sacrificing privacy. That is:

• Solve it and you can get 𝜖𝜖1: 𝜖𝜖2 = 1 ∶ 2𝑐𝑐 2/3

Generalized SVT

𝑞𝑞𝑖𝑖 𝐷𝐷 + 𝐿𝐿𝑎𝑎𝐿𝐿
2𝑐𝑐Δ
𝜖𝜖2

≥ 𝑇𝑇 + 𝐿𝐿𝑎𝑎𝐿𝐿(
Δ
𝜖𝜖1

)

min [2
Δ
𝜖𝜖1

2

+ 2
2𝑐𝑐Δ
𝜖𝜖2

2

]

s.t. 𝜖𝜖1 + 𝜖𝜖2 = t

* Note that in the optimization problem, 𝑡𝑡 denotes a fixed constant, which in fact, is 𝜖𝜖 − 𝜖𝜖3.



• SVT for Monotonic Queries (MQ)
• MQ*: for any changes from 𝐷𝐷 to 𝐷𝐷𝐷, the change in answers of all queries is 

in the same direction (i.e. either ∀𝑖𝑖 𝑞𝑞𝑖𝑖 𝐷𝐷 ≥ 𝑞𝑞𝑖𝑖 𝐷𝐷′ , 𝑅𝑅𝑃𝑃 ∀𝑖𝑖 𝑞𝑞𝑖𝑖 𝐷𝐷 ≤ 𝑞𝑞𝑖𝑖(𝐷𝐷𝐷)). 

• For monotonic queries, the optimization of privacy budget allocation 
becomes 𝜖𝜖1: 𝜖𝜖2 = 1 ∶ 𝑐𝑐2/3.

• SVT vs. EM
• In a non-interactive setting, EM can achieve the same goal.

• Runs EM 𝑐𝑐 times, each with budget 𝜖𝜖
𝑐𝑐

; the quality of the query is its answer; each 

query is selected with prob. proportional to exp( 𝜖𝜖
2𝑐𝑐Δ

).

• EM can be proven to achieve better accuracy.

Generalized SVT

* This is common in the data mining field, e.g. using SVT for frequent itemset mining.



• In interactive settings, use the generalized SVT with optimal 
privacy budget allocation.

• In non-interactive settings, do not use SVT and use EM instead.
• If one gets better performance using SVT than using EM, 
• then it is likely that one’s usage of SVT is non-private.

Recommendation from [VLDB ’17]

Lyu, M., Su, D., & Li, N. (2017). Understanding the sparse vector technique for differential privacy. Proceedings of the VLDB 
Endowment, 10(6), 637-648.



• Title: MBeacon: Privacy-Preserving Beacons* for DNA Methylation 
(甲基化) Data

• Authors: Inken Hagestedt, Yang Zhang†, Mathias Humbert, Pascal Berrang, 
Haixu Tang, XiaoFeng Wang, Michael Backes

• In NDSS 2019, distinguished paper award

• Highlights:
• Attacked a biomedical data search engine system.
• Proposed defense mechanism based on a tailored SVT algorithm.

Case study 1: MBeacon

Hagestedt, I., Zhang, Y., Humbert, M., Berrang, P., Tang, H., Wang, X., & Backes, M. (2019, February). MBeacon: Privacy-Preserving 
Beacons for DNA Methylation Data. In NDSS.

* A kind of molecular probe (分子探针), also the name of a search engine in this paper.



• Background
• Methylation Data

• A kind of important molecule located on DNA that influence cell life 
(on how to copy, express, etc.).

• For privacy research, privacy breach exists since attacker may infer
target’s sensitive information (e.g. cancer, smokes, stressed).

• Beacon system
• A search engine for biomedical researchers that answers: whether its database 

contains any record with the specified nucleotide (核苷酸) at a given position
• Only gives Yes/No response

Case study 1: MBeacon

https://en.wikipedia.org/wiki/DNA_methylation
https://beacon-network.org/



• Modeling
• DNA methylation data 

• A sequence of real numbers1, each between 0-1, i.e. 𝑚𝑚 𝑣𝑣 ∈ 𝑅𝑅[0,1]
𝑀𝑀 .

• Query type
• Are there any patients with this methylation value at a specific methylation position?
• → Are there any patients with methylation value above some threshold for a specific 

position?
• 𝐵𝐵𝐼𝐼: 𝑞𝑞 → 0, 1 , 𝑞𝑞 ≔ (𝐿𝐿𝑅𝑅𝑅𝑅, 𝑣𝑣𝑎𝑎𝑣𝑣)

• Threat Model
• Membership inference attack.
• Adversary with access to the victim’s methylation data 𝑚𝑚(𝑣𝑣) aims to infer whether the 

victim is in a certain database. In this case, database is with specified disease tags.
• 𝐴𝐴: 𝑚𝑚 𝑣𝑣 ,𝐵𝐵𝐼𝐼 ,𝐾𝐾 → {0, 1}, 𝐾𝐾 denotes some additional knowledge (i.e. means and std 

deviations of the general population at the methylation positions).

Case study 1: MBeacon

1.  Each value represents the fraction of methylated dinucleotides (二核苷酸) at this position.



• Defense Mechanism
• Intuition

• Adversary successfully attacks the system, iff the output of the query deviate his 
background knowledge, which means he learns additional info from the query.

• According to biomedical research, only a few methylation regions differ from the 
general population. —— Sparse vector technique.

• Double SVT: SVT2

• The 𝑖𝑖th query is not privacy-sensitive if:

• The algorithm answers negative for these
non-privacy-sensitive queries; and positive 
otherwise.

Case study 1: MBeacon

𝛼𝛼𝑖𝑖 + 𝑦𝑦𝑖𝑖 < 𝑇𝑇 + 𝑧𝑧1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑖𝑖 < 𝑇𝑇 + 𝑧𝑧1
𝑅𝑅𝑃𝑃 ( 𝛼𝛼𝑖𝑖 + 𝑦𝑦𝑖𝑖′ ≥ T + 𝑧𝑧2 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑖𝑖 ≥ 𝑇𝑇 + 𝑧𝑧2 )

* 𝛼𝛼𝑖𝑖 is the number of patients in the MBeacon that corresponds to the query 𝑞𝑞𝑖𝑖; 
𝛽𝛽𝑖𝑖 is the estimated number of patients given by the general population.



• Defense Mechanism
• Part 1. Tailored SVT (right figure).
• Part 2. Transform SVT result to MBeacon

results (left figure).

Case study 1: MBeacon



• Title: PrivateSQL: A Differentially Private SQL Query Engine
• Authors: Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, 

Ashwin Machanavajjhala , Michael Hay, Gerome Miklau
• In VLDB 2019

• Highlights
• System work — an end-to-end differentially private relational database 

system is proposed, which supports a rich class of SQL queries.
• Automatically calculating sensitivity and adding noise.
• Answering complex SQL counting queries under a fixed privacy budget by 

generating private synopses.

Case study 2: PrivateSQL

Kotsogiannis, I., Tao, Y., He, X., Fanaeepour, M., Machanavajjhala, A., Hay, M., & Miklau, G. (2019). PrivateSQL: a differentially 
private SQL query engine. Proceedings of the VLDB Endowment, 12(11), 1371-1384.



• Design Goals:
• Workloads: 

• The system should answer a workload of queries with bounded privacy loss.
• Complex Queries: 

• Each query in the workload can be a complex SQL expression over multiple 
relations.

• Multi-resolution Privacy: 
• The system should allow the data owner to specify which entities in the database 

require protection.

Case study 2: PrivateSQL

Private Synopses

Privacy Policies



• Architecture
• Two main phases

• Phase 1. Synopsis Generation.
• Phase 2. Query Answering.

Case study 2: PrivateSQL

A synopsis captures important 
statistical information about the 
database.

A view is interpreted as a 
relational algebra expression.



• Architecture
• Two main phases

• Phase 1. Synopsis Generation.
• Phase 2. Query Answering.

Case study 2: PrivateSQL

A synopsis captures important 
statistical information about the 
database.

A view is interpreted as a 
relational algebra expression.

Challenge. 1. hard to compute the global sensitivity of 
a SQL view; 2. some operation may yield unbounded 
numbers of tuples.

Solution. 1. learn a threshold from data; 
2. adopt Truncation operator to bound 
the join size by throwing away join keys 
above the threshold.

*  SVT is used as a sub-routine to calculate the threshold from the data.



• Title: Privacy-preserving Deep Learning
• Authors: Reza Shokri, Vitaly Shmatikov
• In CCS 2015

• Highlights
• Early system work in considering user data privacy for deep learning.
• A mechanism called distributed selective SGD (DSSGD) is proposed.
• Efforts in analysis and mitigation of privacy leakage, using differential 

privacy for privacy-preserving deep learning.

Case study 3: Privacy-preserving Deep Learning 

Shokri, R., & Shmatikov, V. (2015, October). Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC conference 
on computer and communications security (pp. 1310-1321).



• Private-by-design
• Preventing direct leakage

• while training - user do not reveal data 
to others

• while using – user can use the model locally
• Preventing indirect leakage – DP!

• noise is added to gradients to prevent leakage 
of information related to local dataset

Case study 3: Privacy-preserving Deep Learning 



• Private-by-design
• Preventing direct leakage

• while training - user do not reveal data 
to others

• while using – user can use the model locally
• Preventing indirect leakage – DP!

• noise is added to gradients to prevent leakage 
of information related to local dataset

Case study 3: Privacy-preserving Deep Learning 

Potential privacy leakage: 
1. How gradients are selected for sharing
2. The actual values of the shared gradients

SVT!



• The algorithm for differentially
private DSSGD for user i.

• Sparse vector technique is used to:
• (i) randomly select a small subset of 

gradients whose values are above a 
threshold, and then,

• (ii) share perturbed values of the 
selected gradients in a differentially
private manner.

• Note that SVT here can be replaced
by EM due to non-interactiveness.

Case study 3: Privacy-preserving Deep Learning 
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