
A Brief Tutorial on Sparse Vector Technique
—— An Advanced Mechanism in Differential Privacy

• Recap of Differential Privacy

• Sparse Vector Technique

• Generalized SVT: An Enhanced Version [VLDB ’17]

• Case Study 1: Mbeacon [NDSS ’19]

• Case Study 2: PrivateSQL [VLDB ’19]

• Case Study 3: Privacy-preserving Deep Learning [CCS ’15]

Outline

Kotsogiannis, I., Tao, Y., He, X., Fanaeepour, M., Machanavajjhala, A., Hay, M., & Miklau, G. (2019). PrivateSQL: a differentially
private SQL query engine. Proceedings of the VLDB Endowment, 12(11), 1371-1384.

Lyu, M., Su, D., & Li, N. (2017). Understanding the sparse vector technique for differential privacy. Proceedings of the VLDB
Endowment, 10(6), 637-648.

Hagestedt, I., Zhang, Y., Humbert, M., Berrang, P., Tang, H., Wang, X., & Backes, M. (2019, February). MBeacon: Privacy-Preserving
Beacons for DNA Methylation Data. In NDSS.

Shokri, R., & Shmatikov, V. (2015, October). Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security (pp. 1310-1321).

• For every pair of inputs, say 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝐷, which differ in one row, taking the
output, the likelihood ratio between observing 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝐷 is bounded by 𝑒𝑒𝜖𝜖.

• Namely, the adversary cannot distinguish 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷′based on the output 𝑂𝑂.

Differential Privacy

Sensitivity:
Δ = max |𝑞𝑞 𝐷𝐷 − 𝑞𝑞(𝐷𝐷𝐷)|

Ratio Bound:
𝑃𝑃𝑃𝑃[𝑀𝑀 𝐷𝐷 = 𝑆𝑆]
Pr[𝑀𝑀 𝐷𝐷′ = 𝑆𝑆] ≤ 𝑒𝑒𝜖𝜖

𝝐𝝐-DP:

𝑃𝑃𝑃𝑃 𝑀𝑀 𝐷𝐷 = 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖𝑃𝑃𝑃𝑃[𝑀𝑀 𝐷𝐷𝐷 = 𝑆𝑆]

Laplace Mechanism:

𝑀𝑀𝐿𝐿 𝑥𝑥, 𝑞𝑞 · , 𝜖𝜖 = 𝑞𝑞 𝑥𝑥 + 𝐿𝐿𝑎𝑎𝐿𝐿(
Δ
𝜖𝜖)

* 𝜖𝜖 is called the privacy budget, a smaller 𝜖𝜖 indicates better privacy but often worse data utility.

• Exponential Mechanism
• Answering non-numerical queries such as “most popular fruit” (Table 1).

• Consider the “utility score” of a response: 𝑢𝑢:𝑁𝑁|𝐷𝐷| × 𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑒𝑒 → 𝑅𝑅.
• The utility score reflect the users’ preference to the items.

Differential Privacy

McSherry, F., & Talwar, K. (2007, October). Mechanism design via differential privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS'07) (pp. 94-103). IEEE.

Category Utility Score
Δu = 1

𝑃𝑃𝑃𝑃[𝑅𝑅𝑒𝑒𝑅𝑅𝐿𝐿𝑅𝑅𝑎𝑎𝑅𝑅𝑒𝑒]
𝜖𝜖 = 0 𝜖𝜖 = 0.1 𝜖𝜖 = 1

Apple 30 0.25 0.424 0.924

Orange 25 0.25 0.330 0.075

Pear 8 0.25 0.141 1.5E-05

Pineapple 2 0.25 0.105 7.7E-07

Table 1. An Example for Exponential Mechanism.Exponential Mechanism:

𝑀𝑀𝐸𝐸 𝑥𝑥,𝑢𝑢,𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑒𝑒 selects and outputs
an element 𝑃𝑃 ∈ 𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑒𝑒 with prob.
proportional to exp(𝜖𝜖𝜖𝜖(𝑥𝑥,𝑟𝑟)

2Δ𝜖𝜖
).

• Motivating Example
• Consider a very large number, say k, of queries to answer. If using Laplace

mechanism, 𝜖𝜖 would be proportional to 𝑘𝑘.

• But what if the data analyst believe only a few queries are
significant, and will take value above a certain threshold?

• Goal and Intuition:
• Saving privacy budget.

• Add less noise to achieve the same level of privacy.
• Answer insignificant queries (with negative results) “for free”.

• Only gives “positive/negative” response, not the noisy value.
• The answer is sparse.

Sparse Vector Technique

Hardt, M., & Rothblum, G. N. (2010, October). A multiplicative weights mechanism for privacy-preserving data analysis. In 2010
IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS’10) (pp. 61-70). IEEE.

Insignificant queries

Significant queries

• Algorithm 1. Basic Sparse Vector Technique.
• Input: A private database 𝐷𝐷, a stream of queries 𝑄𝑄 = 𝑞𝑞1,𝑞𝑞2, … each with sensitivity no more

than Δ, a sequence of thresholds 𝑇𝑇 = 𝑇𝑇1,𝑇𝑇2, …, and the number 𝑐𝑐 of queries to expect
positive answers.

• Output: A vector of indicators 𝐴𝐴 = 𝑎𝑎1,𝑎𝑎2, …, where each 𝑎𝑎𝑖𝑖 ∈ {⊤,⊥}.

Sparse Vector Technique

* Note that now we discuss SVT in an interactive setting.

⊤ — positive
⊥ — negative

• Algorithm 1. Basic Sparse Vector Technique.
• Input: A private database 𝐷𝐷, a stream of queries 𝑄𝑄 = 𝑞𝑞1,𝑞𝑞2, … each with sensitivity no more

than Δ, a sequence of thresholds 𝑇𝑇 = 𝑇𝑇1,𝑇𝑇2, …, and the number 𝑐𝑐 of queries to expect
positive answers.

• Output: A vector of indicators 𝐴𝐴 = 𝑎𝑎1,𝑎𝑎2, …, where each 𝑎𝑎𝑖𝑖 ∈ {⊤,⊥}.

Sparse Vector Technique

* Note that now we discuss SVT in an interactive setting.

⊤ — positive
⊥ — negativeGenerate (the same) noise 𝜌𝜌

and add to each threshold.

Generate noise 𝑣𝑣𝑖𝑖 and add
to each query 𝑞𝑞𝑖𝑖.

• Algorithm 1. Basic Sparse Vector Technique.
• Input: A private database 𝐷𝐷, a stream of queries 𝑄𝑄 = 𝑞𝑞1,𝑞𝑞2, … each with sensitivity no more

than Δ, a sequence of thresholds 𝑇𝑇 = 𝑇𝑇1,𝑇𝑇2, …, and the number 𝑐𝑐 of queries to expect
positive answers.

• Output: A vector of indicators 𝐴𝐴 = 𝑎𝑎1,𝑎𝑎2, …, where each 𝑎𝑎𝑖𝑖 ∈ {⊤,⊥}.

Sparse Vector Technique

Generate (the same) noise 𝜌𝜌
and add to each threshold.

Generate noise 𝑣𝑣𝑖𝑖 and add
to each query 𝑞𝑞𝑖𝑖.

Stop when the number of ⊤s
outnumbers 𝑐𝑐.

* Note that now we discuss SVT in an interactive setting.

⊤ — positive
⊥ — negative

• Analysis
• Theorem. Algorithm 1 satisfies 𝜖𝜖-DP.

Sparse Vector Technique

𝑃𝑃𝑃𝑃 𝑀𝑀 𝐷𝐷 = 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖𝑃𝑃𝑃𝑃[𝑀𝑀 𝐷𝐷𝐷 = 𝑆𝑆]

• Analysis
• Theorem. Algorithm 1 satisfies 𝜖𝜖-DP.
• Proof. Consider any 𝑎𝑎𝑖𝑖 ∈ ⊤,⊥ 𝑙𝑙 . Let 𝑎𝑎 = < 𝑎𝑎1, … ,𝑎𝑎𝑙𝑙 >, 𝐼𝐼⊤= {

}
𝑖𝑖: 𝑎𝑎𝑖𝑖 =

⊤ ,𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼⊥ = 𝑖𝑖:𝑎𝑎𝑖𝑖 = ⊥ . Let

• We have:

Sparse Vector Technique

Integrate all possible values
for 𝜌𝜌, the noise added to the
threshold.

The same logic for 𝐷𝐷𝐷.

𝑃𝑃𝑃𝑃 𝑀𝑀 𝐷𝐷 = 𝑆𝑆 ≤ 𝑒𝑒𝜖𝜖𝑃𝑃𝑃𝑃[𝑀𝑀 𝐷𝐷𝐷 = 𝑆𝑆]

• Analysis
• Proof. (Cont.)

Sparse Vector Technique

The change of integration
variable from 𝑧𝑧 to 𝑧𝑧 − Δ.

Since 𝜌𝜌 = 𝐿𝐿𝑎𝑎𝐿𝐿 Δ
𝜖𝜖1

,

Pr 𝜌𝜌 = 𝑧𝑧 − Δ ≤ 𝑒𝑒𝜖𝜖1 Pr 𝜌𝜌 = 𝑧𝑧 .
We leave 𝑓𝑓𝑖𝑖 𝐷𝐷, 𝑧𝑧 − Δ ≤ 𝑓𝑓𝑖𝑖 𝐷𝐷𝐷, 𝑧𝑧
later.

• Analysis
• Proof. (Cont.)

Sparse Vector Technique

The result from last page.

𝑅𝑅𝑖𝑖 𝐷𝐷, 𝑧𝑧 − Δ ≤ 𝑒𝑒
𝜖𝜖2
𝑐𝑐 𝑅𝑅𝑖𝑖(𝐷𝐷′, 𝑧𝑧),

we will show this later.

We have at most 𝑐𝑐 positive
outcomes, i.e. 𝐼𝐼⊤ ≤ 𝑐𝑐.

• Analysis
• Proof. (Cont.)

Sparse Vector Technique

Global sensitivity, by definition:
𝑞𝑞𝑖𝑖 𝐷𝐷′ − Δ ≤ 𝑞𝑞𝑖𝑖 𝐷𝐷 ≤ 𝑞𝑞𝑖𝑖 𝐷𝐷′ + Δ.

𝑣𝑣𝑖𝑖 is sampled from 𝐿𝐿𝑎𝑎𝐿𝐿(2𝑐𝑐Δ
𝜖𝜖2

).

Herewith we finish the proof.

𝑓𝑓𝑖𝑖 𝐷𝐷, 𝑧𝑧 − Δ = Pr 𝑞𝑞𝑖𝑖 𝐷𝐷 + 𝑣𝑣𝑖𝑖 < 𝑇𝑇𝑖𝑖 + 𝑧𝑧 − Δ

≤ Pr 𝑞𝑞𝑖𝑖 𝐷𝐷′ − Δ + 𝑣𝑣𝑖𝑖 < 𝑇𝑇𝑖𝑖 + 𝑧𝑧 − Δ

≤ Pr 𝑞𝑞𝑖𝑖 𝐷𝐷′ + 𝑣𝑣𝑖𝑖 < 𝑇𝑇𝑖𝑖 + 𝑧𝑧 = 𝑓𝑓𝑖𝑖 𝐷𝐷𝐷, 𝑧𝑧

Same logic for 𝑓𝑓𝑖𝑖 𝐷𝐷, 𝑧𝑧 − Δ .

• Algorithm 2. Generalized SVT in [VLDB ’17].

Generalized SVT

Theorem. Algorithm 2
satisfies (𝜖𝜖1+ 𝜖𝜖2+ 𝜖𝜖3)-DP.

Part 2. If provide noisy
answer, then consume 𝜖𝜖3-DP.

Part 1. (𝜖𝜖1+ 𝜖𝜖2)-DP as shown
in analysis of Algorithm 1.

* Part 2 is taken into account in algorithm 2 because in many variants of SVT they output the noisy answers. This part is to
explicitly show that outputting noisy answers needs additional privacy budget.

• Budget Allocation
• Different strategy in allocating 𝜖𝜖1+ 𝜖𝜖2 results in different Accuracy.
• Recap the comparing part of SVT:

• If minimize the variance of 𝐿𝐿𝑎𝑎𝐿𝐿 Δ
𝜖𝜖1

− 𝐿𝐿𝑎𝑎𝐿𝐿(2𝑐𝑐Δ
𝜖𝜖2

), we can optimize the
accuracy without sacrificing privacy. That is:

• Solve it and you can get 𝜖𝜖1: 𝜖𝜖2 = 1 ∶ 2𝑐𝑐 2/3

Generalized SVT

𝑞𝑞𝑖𝑖 𝐷𝐷 + 𝐿𝐿𝑎𝑎𝐿𝐿
2𝑐𝑐Δ
𝜖𝜖2

≥ 𝑇𝑇 + 𝐿𝐿𝑎𝑎𝐿𝐿(
Δ
𝜖𝜖1

)

min [2
Δ
𝜖𝜖1

2

+ 2
2𝑐𝑐Δ
𝜖𝜖2

2

]

s.t. 𝜖𝜖1 + 𝜖𝜖2 = t

* Note that in the optimization problem, 𝑡𝑡 denotes a fixed constant, which in fact, is 𝜖𝜖 − 𝜖𝜖3.

• SVT for Monotonic Queries (MQ)
• MQ*: for any changes from 𝐷𝐷 to 𝐷𝐷𝐷, the change in answers of all queries is

in the same direction (i.e. either ∀𝑖𝑖 𝑞𝑞𝑖𝑖 𝐷𝐷 ≥ 𝑞𝑞𝑖𝑖 𝐷𝐷′ , 𝑅𝑅𝑃𝑃 ∀𝑖𝑖 𝑞𝑞𝑖𝑖 𝐷𝐷 ≤ 𝑞𝑞𝑖𝑖(𝐷𝐷𝐷)).

• For monotonic queries, the optimization of privacy budget allocation
becomes 𝜖𝜖1: 𝜖𝜖2 = 1 ∶ 𝑐𝑐2/3.

• SVT vs. EM
• In a non-interactive setting, EM can achieve the same goal.

• Runs EM 𝑐𝑐 times, each with budget 𝜖𝜖
𝑐𝑐

; the quality of the query is its answer; each

query is selected with prob. proportional to exp(𝜖𝜖
2𝑐𝑐Δ

).

• EM can be proven to achieve better accuracy.

Generalized SVT

* This is common in the data mining field, e.g. using SVT for frequent itemset mining.

• In interactive settings, use the generalized SVT with optimal
privacy budget allocation.

• In non-interactive settings, do not use SVT and use EM instead.
• If one gets better performance using SVT than using EM,
• then it is likely that one’s usage of SVT is non-private.

Recommendation from [VLDB ’17]

Lyu, M., Su, D., & Li, N. (2017). Understanding the sparse vector technique for differential privacy. Proceedings of the VLDB
Endowment, 10(6), 637-648.

• Title: MBeacon: Privacy-Preserving Beacons* for DNA Methylation
(甲基化) Data

• Authors: Inken Hagestedt, Yang Zhang†, Mathias Humbert, Pascal Berrang,
Haixu Tang, XiaoFeng Wang, Michael Backes

• In NDSS 2019, distinguished paper award

• Highlights:
• Attacked a biomedical data search engine system.
• Proposed defense mechanism based on a tailored SVT algorithm.

Case study 1: MBeacon

Hagestedt, I., Zhang, Y., Humbert, M., Berrang, P., Tang, H., Wang, X., & Backes, M. (2019, February). MBeacon: Privacy-Preserving
Beacons for DNA Methylation Data. In NDSS.

* A kind of molecular probe (分子探针), also the name of a search engine in this paper.

• Background
• Methylation Data

• A kind of important molecule located on DNA that influence cell life
(on how to copy, express, etc.).

• For privacy research, privacy breach exists since attacker may infer
target’s sensitive information (e.g. cancer, smokes, stressed).

• Beacon system
• A search engine for biomedical researchers that answers: whether its database

contains any record with the specified nucleotide (核苷酸) at a given position
• Only gives Yes/No response

Case study 1: MBeacon

https://en.wikipedia.org/wiki/DNA_methylation
https://beacon-network.org/

• Modeling
• DNA methylation data

• A sequence of real numbers1, each between 0-1, i.e. 𝑚𝑚 𝑣𝑣 ∈ 𝑅𝑅[0,1]
𝑀𝑀 .

• Query type
• Are there any patients with this methylation value at a specific methylation position?
• → Are there any patients with methylation value above some threshold for a specific

position?
• 𝐵𝐵𝐼𝐼: 𝑞𝑞 → 0, 1 , 𝑞𝑞 ≔ (𝐿𝐿𝑅𝑅𝑅𝑅, 𝑣𝑣𝑎𝑎𝑣𝑣)

• Threat Model
• Membership inference attack.
• Adversary with access to the victim’s methylation data 𝑚𝑚(𝑣𝑣) aims to infer whether the

victim is in a certain database. In this case, database is with specified disease tags.
• 𝐴𝐴: 𝑚𝑚 𝑣𝑣 ,𝐵𝐵𝐼𝐼 ,𝐾𝐾 → {0, 1}, 𝐾𝐾 denotes some additional knowledge (i.e. means and std

deviations of the general population at the methylation positions).

Case study 1: MBeacon

1. Each value represents the fraction of methylated dinucleotides (二核苷酸) at this position.

• Defense Mechanism
• Intuition

• Adversary successfully attacks the system, iff the output of the query deviate his
background knowledge, which means he learns additional info from the query.

• According to biomedical research, only a few methylation regions differ from the
general population. —— Sparse vector technique.

• Double SVT: SVT2

• The 𝑖𝑖th query is not privacy-sensitive if:

• The algorithm answers negative for these
non-privacy-sensitive queries; and positive
otherwise.

Case study 1: MBeacon

𝛼𝛼𝑖𝑖 + 𝑦𝑦𝑖𝑖 < 𝑇𝑇 + 𝑧𝑧1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑖𝑖 < 𝑇𝑇 + 𝑧𝑧1
𝑅𝑅𝑃𝑃 (𝛼𝛼𝑖𝑖 + 𝑦𝑦𝑖𝑖′ ≥ T + 𝑧𝑧2 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑖𝑖 ≥ 𝑇𝑇 + 𝑧𝑧2)

* 𝛼𝛼𝑖𝑖 is the number of patients in the MBeacon that corresponds to the query 𝑞𝑞𝑖𝑖;
𝛽𝛽𝑖𝑖 is the estimated number of patients given by the general population.

• Defense Mechanism
• Part 1. Tailored SVT (right figure).
• Part 2. Transform SVT result to MBeacon

results (left figure).

Case study 1: MBeacon

• Title: PrivateSQL: A Differentially Private SQL Query Engine
• Authors: Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour,

Ashwin Machanavajjhala , Michael Hay, Gerome Miklau
• In VLDB 2019

• Highlights
• System work — an end-to-end differentially private relational database

system is proposed, which supports a rich class of SQL queries.
• Automatically calculating sensitivity and adding noise.
• Answering complex SQL counting queries under a fixed privacy budget by

generating private synopses.

Case study 2: PrivateSQL

Kotsogiannis, I., Tao, Y., He, X., Fanaeepour, M., Machanavajjhala, A., Hay, M., & Miklau, G. (2019). PrivateSQL: a differentially
private SQL query engine. Proceedings of the VLDB Endowment, 12(11), 1371-1384.

• Design Goals:
• Workloads:

• The system should answer a workload of queries with bounded privacy loss.
• Complex Queries:

• Each query in the workload can be a complex SQL expression over multiple
relations.

• Multi-resolution Privacy:
• The system should allow the data owner to specify which entities in the database

require protection.

Case study 2: PrivateSQL

Private Synopses

Privacy Policies

• Architecture
• Two main phases

• Phase 1. Synopsis Generation.
• Phase 2. Query Answering.

Case study 2: PrivateSQL

A synopsis captures important
statistical information about the
database.

A view is interpreted as a
relational algebra expression.

• Architecture
• Two main phases

• Phase 1. Synopsis Generation.
• Phase 2. Query Answering.

Case study 2: PrivateSQL

A synopsis captures important
statistical information about the
database.

A view is interpreted as a
relational algebra expression.

Challenge. 1. hard to compute the global sensitivity of
a SQL view; 2. some operation may yield unbounded
numbers of tuples.

Solution. 1. learn a threshold from data;
2. adopt Truncation operator to bound
the join size by throwing away join keys
above the threshold.

* SVT is used as a sub-routine to calculate the threshold from the data.

• Title: Privacy-preserving Deep Learning
• Authors: Reza Shokri, Vitaly Shmatikov
• In CCS 2015

• Highlights
• Early system work in considering user data privacy for deep learning.
• A mechanism called distributed selective SGD (DSSGD) is proposed.
• Efforts in analysis and mitigation of privacy leakage, using differential

privacy for privacy-preserving deep learning.

Case study 3: Privacy-preserving Deep Learning

Shokri, R., & Shmatikov, V. (2015, October). Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security (pp. 1310-1321).

• Private-by-design
• Preventing direct leakage

• while training - user do not reveal data
to others

• while using – user can use the model locally
• Preventing indirect leakage – DP!

• noise is added to gradients to prevent leakage
of information related to local dataset

Case study 3: Privacy-preserving Deep Learning

• Private-by-design
• Preventing direct leakage

• while training - user do not reveal data
to others

• while using – user can use the model locally
• Preventing indirect leakage – DP!

• noise is added to gradients to prevent leakage
of information related to local dataset

Case study 3: Privacy-preserving Deep Learning

Potential privacy leakage:
1. How gradients are selected for sharing
2. The actual values of the shared gradients

SVT!

• The algorithm for differentially
private DSSGD for user i.

• Sparse vector technique is used to:
• (i) randomly select a small subset of

gradients whose values are above a
threshold, and then,

• (ii) share perturbed values of the
selected gradients in a differentially
private manner.

• Note that SVT here can be replaced
by EM due to non-interactiveness.

Case study 3: Privacy-preserving Deep Learning

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30

