ParmeSan: Sanitizer-guided Greybox Fuzzing
USENIX 2020

Sebastian Osterlund Kaveh Razavi Herbert Bos Cristiano Giuffrida
Vrije Universiteit Vrije Universiteit Vrije Universiteit Vrije Universiteit
Amsterdam Amsterdam Amsterdam Amsterdam

*some pages borrowed from Zheyu Ma

background

01 &3
0110
0001

1y

Test program

e What is fuzzing: feed random inputs to tri
as possible

e What is state-of-the-art of fuzzing researcn:
* black-box fuzzing: totally random
e white-box fuzzing: symbolic execution
e gray-box fuzzing:
* coverage-guided
e directed fuzzing

e heuristics: Dynamic data-flow analysis (DFA), Neural network, etc.

Contribution

e designs the first sanitizer-guided fuzzer using a two-stage
directed fuzzing strategy to efficiently reach all the
interesting targets.

e finds the same bugs as state-of-the-art coverage-guided
and directed fuzzers in less time.

Motivation

e Coverage-guided Fuzzer:
0 lIdeal: Code coverage is strongly correlated with bug coverage.
O Reality: Code coverage is a huge overapproximation of bug
coverage.
e Directed Fuzzer:
O ldeal: Steering the program towards locations that are more likely to
be affected by bugs
O Reality: They underapproximate overall bug coverage.

ParmeSan: Sanitizer-guided Fuzzer

Overview

* Target Acquisition
e Dynamic Control Flow Graph (CFG)

e Sanitizer-guided Fuzzer

Graph
extractor

Static > Dynamic
CFG CFG

Program
Instrumentor Instrumented
Binaries
D

Sanitizer Seed
Inputs
Y, I _B

Targ_ej]—> Targets
acquisition

Figure 1: An overview of the ParmeSan fuzzing pipeline. The target acquisition step automatically obtains fuzzing targets.
These targets are then fed to the ParmeSan fuzzer, which directs the inputs towards the targets by using the continuously
updated dynamic CFG. The inputs to the pipeline consist of a target program, a sanitizer, and seed inputs.

H=—=

ParmeSan 5 Error
Fuzzer Inputs

Target Acquisition

e Statically compare Sanitizer-instrumented program and original program,

iInstrumented points are target branch

O Sanitizers instrument programs in two ways.
v Update internal data structures (e.g., shadow memory)
v Add a branch condition (e.g., ASan’s out of bound access detection)

4 = load i8*, 1i8**

= load 18, i8*

, align §
5 = getelementptr inbounds i8, i8* %4,
, align 1

i64d 1

load i8*, i8** %2, align ©

getelementptr inbounds i8, i8* %4, 164 |
ptrtoint i8* %4 to 164

add i64

icmp uge i64 %7,

icmp ult 164 %7,

10 = select il true, il , 1l

br il %10, label %12, label %1l

call void (¢ ubsan handle pointe: rflow (...)
br label %1’

' = load i8, i8* %5, align !

Target Acquisition

* Confirm sanitizer’s ability to find real-world bugs

e Each kind of sanitizers target at one bug types

Prog Bug Type Sanitizer (% non-target)
ASan UBSan TySan
base64 | LAVA-M | BO (5%) | X — | X —
who LAVA-M | BO (9%) | X — | X —
uniq LAVA-M | BO (15%) | X — | X —
mdSsum | LAVA-M | BO (12%) | X — | X —
OpenSSL | 2014-0160 | BO (8%) | X — | X —
pcre2 - UAF (7%) | X — | X —
libxml2 | memleak | TC | X — | X — (80%)
libpng oom I0 | X — (40%) | X —
libarchive . BO (17%) | X — | X —

Table 1: Bugs detected and percentage of branches that
can be disregarded (i.e., are not on the path to an instru-
mented basic block) compared to coverage-oriented fuzzing.
UAF= use-after-free, BO=buffer overflow, TC=type confu-
sion, [O=integer overflow

Target Acquisition

e Target Pruning

0 Profile-guided pruning:
Profile the target program and remove all the sanitizer checks on hot paths
0 Complexity-based pruning:
Score functions based on how many instructions are added/modified by the
sanitizer and mark targets that score higher than others as more interesting.

e Example
e for base64 program in LAVA-M, top 3 targets are

, and , the first 2
triggers bugs

Dynamic CFG

e CFG construction
o Start with the CFG that is statically generated by LLVM

X=5
y=2
LO: if (y< 17) goto L1

Dynamic CFG

e CFG construction

o Start with the CFG that is statically generated by LLVM
o Adding edges as the program executes during fuzzing

typedef int(*fun_t)(int);

int foolint ')

b 4
L
“_.g‘“ntf("l.'lll" ‘u:'k: 1’1}."-,)
return a;
Jclass ClargetObject
|
public:
fun t fun;
1.
I
int tmain(int & y TCHAR® vl])
r
1
int 1 - @;
LTargetObject® o_array = new ClargetObiject|5];

for (L =~ @5 & < 1968G; 1+3)
o-accaylal Zun & foos

l o arrayl[@]. fun(l); l

return ©;

Dynamic CFG

e CFG construction

o Start with the CFG that is statically generated by LLVM
O Adding edges as the program executes during fuzzing
O Distance calculation:
Use the number of conditionals between a starting point and the target

Conditional Graph (CG)
e Distance Metric

(

0 if c € Targets
y o it N(¢) =0 N(c): the set of successors of ¢ with
(c) = 5 A1) a path to at least one of the targets,
\ nb\([})v - + otherwise

* Augmented with DFA

Sanitizer-guided Fuzzer

e End-to-end workflow

O A short coverage-oriented exploration and tracing phase to get the CFG

O A directed exploration phaseto reach the target basic blocks

O An exploitation phase which gradually starts when any of the specified
targets are reached.

T0O T1 T2 T3
HIAIL|O

HE|L O

Figure 2: Example of DFA mutation. The taint label (7'1)
1s recorded at a newly uncovered conditional, allowing the
fuzzer to learn that the value should be either fixed to E or
mutated further.

Sanitizer-guided Fuzzer

e |nput Prioritization

e Maintaining a queue of (input, condition)

O The queue is sorted based on a tuple consisting of (runs, distance)

O runs is the number of times this entry has been popped from the queue

O distance is the calculated distance of the conditional to our targets
obtained by using our dynamic CFG.

O Using the number of runs as the first key when sorting.

O Mutate the selected seed (as provided by DFA)

Evaluation

CVE Fuzzer |Runs| p-val [Mean TTE
OpenSSL
ParmeSan 30 5m10s
2014-0160 HawkEye - -
AFLGo 300.006 20m15s
Binutils

2016-4487 PHarmlfga“ ;g) ggs
2016-4488 | AWKEYE ma7s
AFLGo 3010.005 6m20s

ParmeSan 30 ImS5s

2016-4489 HawkEye | 20 3m26s
AFLGo 30 0.03 2m54s

ParmeSan 30 55s
2016-4490 HawkEye | 20 1m43s
AFLGo 30| 0.01 Im24s

ParmeSan 10 [h10m

2016-4491 HawkEye 9 5h12m
AFLGo 510.003 6h21m

2016-4492 ParmeSan 30 2m10s
AFLGo 2010.003 8m40s

ParmeSan 10 1h10m

2016-6131 HawkEye 9 4h49m
AFLGo 51 0.04 5h50m

e ParmeSan v.s. Other Directed Fuzzers

Table 2: Reproduction of earlier results in crash reproduction
in greybox fuzzers. We manually select the target and show
the mean time-to-exposure.

e Target: Show the availability of DFA
iInformation alone improves
directed fuzzing

e ParmeSan skips its target
acquisition step

e Conclusion: ParmeSan significantly
improves the TTE of bugs even for
traditional directed fuzzing.

Evaluation

e ParmeSan v.s Coverage-guided Fuzzers

Prog Type |Runs | AFLGo NEUZZ QSYM Angora ParmeSan
boringssl UAF |10 2281 2h32m 2520 1h20m| 2670 3h20m| 2510 45m 1850 25m
c-ares BO |10 202 Ss 275 3s 280 20s 270 Is 200 Is
freetype?2 10 5 X X X X X X| 57330 47h 49320 43h
pcre2 UAF |10 9023 25m| 31220 l6m| 32430 1h20m| 30111 15m 8761 8m
lcms BO |10 1079 6m 2876 1mS50s| 3231 Tm| 2890 2m 540 41s
libarchive BO |10 4870 1h12m 5945 1h20m X X| 6208 22m 4123 13m
libssh ML |10 365 3mlO0s 419 43s 631 2m32s 341 32s 123 50s
libxml2 BO |10 5780 51m 7576 25m| 12789 2h5Sm| 5071 20m 2701 I1m
libxml2 ML |10 5755 30m| 10644 1I9m| 11260 1h10m| 10580 20m 2554 17m
openssl-1.0.1f [BO |10 550 S0m 814 10m12s 853 5h25m 793 Sm 543 3mds
openssl-1.0.1f [ML |10 1250 Im 717 40s | 4570 23m 720 40s 709 37s
proj4 ML |10 82 7m30s 83 1m5S5s 86 10mS5s 83 1m40s 80 1m26s
re2 BO |10 5172 47m 5178 S50m| 7610 2h| 4073 2Im 3267 12m35s
woff2 BO |10 91 45m 94 31m20s 98 41m 90 I5m 83 8m
woff2 OOM | 10 50 2m 50 22s 53 1md5s 50 20s 49 12s
Geomean diff +16% +288% | +40% +81% | +95% +867% | +33% +37%

e Target: ParmeSan finds bugs faster
than coverage-guided fuzzers.

e Benchmark: Google fuzzer-test-suite

e Use ASan for ParmeSan’s target
acquisition step

Evaluation

e Sanitizer Impact

Bug Type | Sanitizer | Targets | Covered | uTTE ASan 590 X 31s
ASan 533 Sm libssh ML UBSan 57 X 33s
CVE-2014-0160 |BO |UBSan 120 X 6m TySan 13 X 35s
Tysan 5 X 6m LSan 104 Vv 25s
ASan 357 ; 10m ASan 352 X 15m
CVE-2015-8317 |BO |UBSan 75| x| S0m libxml ML gy';ii“ o I
TysSan 0] X >0m LSan 191 12m
ASan 1221 10m ASan 533 X 40s
pcre2 UAF | UBSan 52 X 20m UBSan 120 X 50s
TySan 1 gm openssl ML 1 ysan 5 X 43s
ASan 437 X 47h LSan 191 v 32s
freetype2 I0 |UBSan 48| v 20h ASan 7291 X |1m30s
TySan 71| X >48h proj4 ML ¥13SSa“ gg ;‘ ém?gs
Asan 230\ 50 LSan b v | s
CVE-2011-1944 |10 |UBSan 125 20s
TySan 8 X >0s Table 5: Bugs found by ParmeSan using different sanitizers
ASan 450 X in the analysis stage. v in targets, bug found; X not in targets,
CVE-2018-13785110 | UBSan 45 Y 32m bug found; For the memory leak (ML) bugs we also show the
TySan 31 X Sh performance of LeakSanitizer.

Evaluation

* Ability to detect new bugs

Prog Version |Bugs | NEUZZ | QSYM | Angora | ParmeSan

lh 24h|1h 24h|1h 24h|1h 24h

OSS Fuzz [39]
curl 54c622a 110 00 O, 0 OfO 1
json-c ddd0490 oo o0, 0 OO0 1] 1 |
libtiff 80414013 10 0,0 O 0 1|1 |
libxml2 1fbct40 20 0L 0 OO0 1] 1 2
libpcap c0d27d0 10 0,0 O 0 1|1 |
OpenSSL 6¢cedffl 1{0 0,0 1] 0 1] 1 |
ffmpeg 9d92403 o,o o0 OO0 O] O 0
harfbuzz b21cSef o,o o0 O[O0 O] O 0
libpng 3301f7al o,o o, 0 O[O0 O] O 0
Targets from prior work [3, 12, 32]

jhead 3.03 21 0 210 22 2| 2 2
pbc 0.5.14 371 9 9l 2 12|10 29|23 37
protobuf-c 1.3.1 11 0 O 0 O 1 1] 1 |

Table 6: New bugs found within 1h and 24h by ParmeSan
and other state-of-the-art fuzzers. The version 1s denoted by
either a version number or a commit 1d. In total ParmeSan
found 47 new bugs.

Conclusion

e ParmeSan: Sanitizer-guided fuzzer.
e Directed target: Sanitizer-instrumented
e Fuzzing phase:

First: Construct a precise CFG dynamically

Second: DFA for fuzzing

