Hearst Patterns Revisited:
Automatic Hypernym Detection from Large Text Corpora

Stephen Roller, Douwe Kiela, and Maximilian Nickel
Hypernymy

- Hierarchical relations play a central role in knowledge representation (Miller, 1995)

 \[
 \text{cat} \text{ is a feline} \text{ is a mammal} \text{ is an animal}
 \]

 All \textit{animals} are living things -> \textit{cats} are living things

- Automatic hypernymy detection approaches:

 - **Pattern based:** high-precision lexico-syntactic patterns (Hearst, 1992)

 - **Distributional Inclusion:** unconstrained word co-occurrences (Zhitomirsky-Geffet and Dagan, 2005)

/[NP] such as [NP] (and [NP])?/ animals such as cats and dogs
animals including cats and dogs
cats, dogs, and other animals
Objectives

- Are Hearst patterns more valuable than distributional information?
 - Do we learn more from using **general semantic contexts**, or exploiting **highly targeted ones**?
 - Are differences robust across multiple evaluation settings?

- Can we remedy some of Hearst patterns’ weaknesses?
 - Scaling up data and extraction is cheaper and easier today
 - Do embedding methods help alleviate sparsity?
Tasks

10% Validation, 90% Test

Detection
• Distinguish hypernymy pairs from other relations
• Average Precision (AP) across 5 datasets (Shwartz et al., 2017)

Direction
• Identify the direction of entailment ($X \Rightarrow Y$ or $Y \Rightarrow X$?)
• Accuracy across 3 datasets (Kiela et al., 2015)
• 2 also contain non-entailments ($X \Leftrightarrow Y$)

Graded Entailment
• Predict the degree of entailment
• Spearman’s rho on 1 dataset (Vulić et al., 2017)

Detection
• BLESS (Baroni and Lenci, 2011)
• EVAL (Santus et al., 2015)
• LEDS (Baroni et al., 2012)
• Shwartz (Shwartz et al., 2016)
• WBLESS (Weeds et al., 2014)

Direction
• BLESS (Baroni and Lenci, 2011)
• WBLESS (Weeds et al., 2014)
• BiBless (Kiela et al., 2015)

Graded Entailment
• Hyperlex (Vulić et al., 2017)
Hearst Pattern Extraction

Preprocessing

- 10 Hearst patterns
- Gigaword + Wikipedia
 - Lemmatized, POS tagged
- Matches were aggregated and filtered:
 - Pair must match 2 distinct patterns
- 431K distinct pairs covering 243K unique types

<table>
<thead>
<tr>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>X which is a (example</td>
</tr>
<tr>
<td>X (and</td>
</tr>
<tr>
<td>X which is called Y</td>
</tr>
<tr>
<td>X is JJS (most)? Y</td>
</tr>
<tr>
<td>X a special case of Y</td>
</tr>
<tr>
<td>X is an Y that</td>
</tr>
<tr>
<td>X is a !(member</td>
</tr>
<tr>
<td>!(features</td>
</tr>
<tr>
<td>(Unlike</td>
</tr>
<tr>
<td>Y including X1, X2, ...</td>
</tr>
</tbody>
</table>

facebook
Artificial Intelligence Research
Hearst Pattern Models

Count transformation

- **PPMI**(x, y): transform counts using Positive Pointwise Mutual Information

Simple embedding (Truncated SVD)

- **SPMI**(x, y): apply truncated SVD to PPMI counts
- Select k using validation set
- Related to Cederberg and Widdows (2003)

\[
\text{ppmi}(x, y) = \max\left(0, \log \frac{p(x, y)}{p^-(x)p^+(y)}\right)
\]

\[
\text{spmi}(x, y) = u_x^T \Sigma_r v_y
\]
Distributional Methods

• Cosine baseline
• Selected 3 high performing, unsupervised methods based on Shwartz et al. (2017)
 • WeedsPrec (Weeds et al., 2004); invCL (Lenci and Benotto, 2012); SLQS (Santus et al., 2014)
• Use strong distributional space from Shwartz et al. (2017)
 • Wikipedia + UkWaC
 • POS tagged and lemmatized
 • Dependency contexts (Pado and Lapata, 2007; Levy and Goldberg, 2014)
• Tune hyperparameters on validation
Detection

• Distr. methods have trouble with global calibration (AP)
• Pattern has mixed performance
• SPMI model best on 4/5 datasets.
• Embedding Hearst patterns helps overcome sparsity
 • Fills in gaps
 • Downweights outliers
Direction

- Detection + Direction difficult for distributional methods
- Patterns outperform distr. methods on 2/3
- BLESS pathologically difficult for cosine and PPMI
- SPMI significantly better
- Embedding patterns overcomes sparsity
• Pattern based methods outperform distr.
• Embedding hurts...
 • Spearman’s rho doesn’t punish ties (many 0s)
 • Add small noise \((10^{-6})\) to PPMI model to break ties randomly
• SPMI best after adjustment

Graded Entailment

<table>
<thead>
<tr>
<th>Hyperlex</th>
<th>Cosine</th>
<th>Best Distributional</th>
<th>PPMI</th>
<th>SPMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.14</td>
<td>0.43</td>
<td>0.60</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Pattern-based approaches outperform distributional methods
 • Targeted Hearst contexts are more valuable than semantic similarity gains
• Embedding Hearst patterns works well
 • Helps substantially with sparsity issues
• We open source our experiments and evaluation framework:
 https://github.com/facebookresearch/hypernymysuite
Thank you!

Questions?