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Abstract—The advancement of voice controllable systems (VC-
Ses) has dramatically affected our daily lifestyle and catalyzed the
smart home’s deployment. Currently, most VCSes exploit auto-
matic speaker verification (ASV) to prevent various voice attacks
(e.g., replay attack). In this study, we present VMask, a novel
and practical voiceprint mimicry attack that could fool ASV in
smart home and inject the malicious voice command disguised as
a legitimate user. The key observation behind VMask is that the
deep learning models utilized by ASV are vulnerable to the subtle
perturbations in the voice input space. To generate these subtle
perturbations, VMask leverages the idea of adversarial examples.
Then by adding the subtle perturbations to the recordings from
an arbitrary speaker, VMask can mislead the ASV into classifying
the crafted speech samples, which mirror the former speaker
for human, as the targeted victim. Moreover, psychoacoustic
masking is employed to manipulate the adversarial perturbations
under human perception threshold, thus making victim unaware
of ongoing attacks. We validate the effectiveness of VMask
by performing comprehensive experiments on both grey box
(VGGVox) and black box (Microsoft Azure Speaker Verification)
ASVs. Additionally, a real-world case study on Apple HomeKit
proves the VMask’s practicability on smart home platforms.

Index Terms—speaker verification, adversarial examples,
smart home, voiceprint mimicry

I. INTRODUCTION

With the widespread deployment of smart home environ-

ment, our daily lives are becoming more convenient and

intelligent through various home appliances (e.g., heaters,

doors, windows) functioning automatically [1], [2]. Among

the diverse user interfaces (e.g., the image, the voice, motion

sensors) provided by the smart home, the voice interface plays

a key role to facilitate the users to have the control of the smart

devices and services without physical interaction. Currently,

voice interfaces are widely integrated in most popular smart

home platforms (e.g., Apple Homekit [3], Amazon Alexa [4],

Microsoft Cortana [5]) and the market revenue of these voice

controllable systems (VCSes) is predicted to achieve $31.8

billion by 2025 according to Grand View Research’s report

[6].

Despite the convenience brought by the voice interface, it

also faces an ever increasing threat of security and privacy [7].

For example, replay attack can fool the VCS via replaying the

pre-collected legitimate user’s voice samples [8]. Researchers

also tried to exploit the non-linearity of the microphone

circuit and the defect of deep learning algorithms to propose

ultrasonic based [9], [10] or adversarial example based [11],

[12] attacks respectively. In these attacks, the malicious audio

samples are imperceptible and could be even injected in audio

played by commodity devices.

To thwart these attacks, automatic speaker verification

(ASV) or voiceprint recognition techniques are widely adopted

by popular VCSes for user authentication. With ASV, voice

can be used as a unique biometric signature to reflect a

person’s identity. As per “Fundamentals of Biometric Tech-

nology” published by the United States National Biosigna-

ture Test Center, voiceprint is a type of biometric signature

allowing for ease of use, high accuracy, and low cost [13].

The industry has widely accepted ASV as an important bio-

identification technology that extracts phonetic features from

the speaker’s voice signals to validate the speaker’s iden-

tity. For example, Apple devices require “Hey Siri” as the

activation command before any actions are taken. Wechat1

and Alipay2 have also supported voiceprint as an important

alternative solution for user authentication.

While there exists research that are working on exploring

the vulnerabilities in speech recognition components of VCS

[10], [11], [14], less attention has been given to the security

of ASV. If the adversary can mimic the voiceprint of the

victim, he can impersonate the victim to log into his account

and perform the subsequent attacks such as malicious bank

transfer [15] and ordering [10], posing a great threat on the

legitimate user’s security. However, to launch a practical attack

towards ASV, it faces the following research challenges. First,

the model setup, including the architecture establishment and

the parameters selection of most ASVs are kept private and the

system works in a black box manner. Second, in practice, many

ASVs add random challenges in authentication process, which

makes the replay attack or synthesizing attack less practical

in smart home environment. Therefore, how to generate an

arbitrary voice command which could mimic the voiceprint of

the target user remains a big challenge.

In this paper, we present the first practical attack, coined

as VMask, towards ASV systems in smart home environment.

The basic goal of VMask is allowing a source speaker (or

attacker) to mimic the voice of the target speaker (or victim).

By adding some carefully crafted adversarial perturbations to

one benign speech sample from the source speaker, VMask is

1https://blog.wechat.com/2015/05/21/voiceprint-the-new-wechat-password/
2https://www.alipay.com/
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Fig. 1: The architecture of typical voice interface of smart home.

able to generate attack audios that still sound like the source

speaker but would be recognized as the target speaker by

the ASV. To launch such a successful voiceprint attack, the

adversary only needs a few recordings from the target speaker

containing voiceprint from arbitrary content.

To overcome the black box property of popular ASVs, we

first conduct a tentative attack towards a grey box system.

Based on the success of grey box attack, we then exploit

the transferability of adversarial examples and launch black

box attack against real-world ASV systems. To improve the

practicability of VMask, psychoacoustic masking is deployed

during the adversarial audio generation to keep the adversarial

perturbations under the human perception threshold and avoid

incurring human’s suspicion. The evaluation results show that

VMask can successfully breach the popular ASVs including

grey box VGGVox [16] and black box Microsoft Azure

Speaker Recognition API [17]. A real-world case study on

Apple HomeKit also proves the effectiveness of VMask in

smart home environment. In summary, the contributions of

this paper are listed as follows.

• We present VMask, an adversarial example based

voiceprint mimicry attack in smart home environment.

Different from the previous works, VMask could be con-

ducted using commercial-off-the-shelf devices without

cumbersome data pre-collection and is practical in smart

home platforms.

• We propose a novel adversarial audio generation method

to fool the target ASV in which the neural network

setup is totally unknown to the adversary. Specifically,

we propose two different adversarial audio generation

mechanisms targeting for grey box and black box ASV

systems respectively.

• We implement VMask on popular ASVs such as VG-

GVox and Microsoft Azure Speaker Verification (MS-

ASV). The evaluation results show that VMask can

achieve success rates of near 100% and 70% in grey box

and black-box scenarios respectively.

• We perform a case study on the Apple HomeKit, a

popular smart home platform. We enable our VMask

to attack the Siri speaker verification system, and the

experimental results validate the robustness of VMask in

real-world environment.

To the best of our knowledge, this is the first work to

perform real-world adversarial attacks towards speaker veri-

fication on smart home platform. The remainder of this paper

is organized as follows. Section II provides some preliminary

knowledge; In Sec. III, we illustrate our threat model and

attack assumptions; Sec. IV and V present the formulation

of both grey box attack and black box attack. The evaluation

results are given in Sec. VI, followed by a case study on

Apple HomeKit in Sec.VII. Discussion and related work are

presented in Sec.VIII and IX respectively. Finally we conclude

this study in Sec. VIII.

II. PRELIMINARIES

In this section, we introduce the prerequisite knowledge for

this paper.

A. Voice Interface of Smart Home

The voice interface has become the primary user interface

along with the widespread deployment of smart home. As

illustrated in Fig. 1, a typical VCS works in four phases:

voice capturing, user authentication, command recognition
and command execution. First, in voice capturing, the user’s

speech samples are recorded and preprocessed. After that, the

user authentication is conducted based on the voice biomet-

rics extracted from processed speech samples. The command
recognition translates the speech into text only if the user
authentication is successful. Finally, VCS executes actions

according to the recognized commands (e.g., “open the door”).

Usually, the user authentication and command recognition
parts are separated (e.g., Apple Siri and Amazon Alexa require

the user to say the activation words “Hey Siri” and “Alexa”

respectively before initiating any voice commands).

B. Automatic Speaker Verification Techniques

As shown in Fig. 1, the user authentication phase plays a

key role in VCS to secure sensitive operations such as texting

and financial transaction. Recently, automatic speaker verifi-

cation (ASV) technique is widely adopted by popular VCSes,

as it can verify the speaker’s identity only using the speaker’s

speech samples. Most of ASVs require an utterance of a pre-

defined phrase (e.g., “Hey Siri”), and the authentication would

succeed only in the case of both voiceprint match and audio

content match.

ASV works in three phases: developing, enrollment and ver-
ification. In developing phase, large-scale corpora are utilized

to train a background model shaping the speaker manifold.

Then, in the enrollment phase, new speakers are enrolled

by deriving speaker specific information from the enrollment

utterances with the help of background model. Finally, the

user’s speech samples are taken as the input of verification
phase, and the similarity between the features of input and
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Fig. 2: An illustration of adversarial examples in ASV.

legitimate user’s speech samples are calculated. The verifica-

tion is passed only if the similarity score is larger than the

pre-defined threshold [18].

The recent progress in deep learning has inspired the

development of neural network based ASVs [19], [20]. They

are also known as speaker embedding systems, as they extract

embedding vectors from the speaker’s utterances. With the

help of these embedding systems, speaker verification can

be done by measuring the distance of embedding vectors.

In this paper, we only study the deep learning based ASV

since deep learning has become the prominent trend in ASV

developments [16], [19]. However, we show our attack is

not restricted to deep learning based models in Sec. VI by

presenting VMask against black box models without knowing

the model architecture.

C. Adversarial Examples

Adversarial examples are carefully crafted data records

which are similar to the original ones but can lead to the

misclassification of machine learning model [21], [22]. As

shown in Fig. 2, given a machine learning based classifier F
which predicts the class label F (x) for an input instance x,

the adversarial example generation algorithm tries to find a

perturbation δ which satisfy : (1) x is similar to x + δ in a

given distance calculation criterion (e.g., two audio clips sound

similar by human ears); (2) F (x + δ) �= F (x). In the case

of ASV, the attacker’s goal is to manipulate the verification

results using their speech sample x together with the subtle

adversarial perturbation δ.

The fundamental cause of adversarial examples lies in

the neural network’s sensitivity to the perturbations in the

input space. In this paper, we formulate the generation of

adversarial audios as an optimization problem, and the optimal

permutation δ could be obtained by using gradient based

method [23]. As shown in Sec. IV and Sec. V, we design two

different adversarial example generation schemes for popular

grey box and black box ASVs.

III. THREAT MODEL

In this section, we give a picture of VMask’s working

scenario and elaborate the capability of the adversary.
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Adversarial perturbation
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Fig. 3: A typical attack scenario of VMask.

A. Attack Scenario

Fig. 3 illustrates a typical attack scenario of VMask. There

is a smart home platform which belongs to the victim, and

the ASV authenticates the input voice command by checking

both the semantic content and voiceprint. U denotes a speaker

whose voice would extract no suspicion from the victim. For

example, U can be a broadcaster the victim familiar with. To

fool the ASV without raising victim’s suspicion (i.e., the replay

attack cannot be deployed), VMask takes three steps. First, to

generate the audio with semantic context required by ASV,

VMask concatenates speech segments which are pre-collected

from U. Second, from the victim’s voice segment obtained

in public media, VMask extracts the victim’s voiceprint and

crafts the adversarial subtle perturbations, and then adds the

perturbations to the audios concatenated from U . Finally, the

generated audio is embedded on a video clip and played

using a loudspeaker close to the victim. The victim would be

unaware of this ongoing attack, since this adversarial audio

sounds like speaker U in the video being watched without

associating themselves to the voice.

B. Adversary’s Capability in This Study

In this study, we assume VMask has zero knowledge of

the neural network model (e.g., architecture, parameters and

training data) used for ASV. We also assume VMask is unable

to make any modifications on commodity speakers and ASV’s

microphone. However, the VMask can hijack the loudspeaker

placed in close vicinity to the target ASV to conduct attack.

We assume two different access schemes to the victim ASV

models: grey box and black box. The grey box ASV returns the

verification result (accept or reject) along with the numerical

confidence value, while the black box scheme only returns the

verification result [24]. Note that both grey box and black box

reveal no model setup information to VMask.

IV. GREY BOX ATTACK

As a prologue before delving into black box attack, we first

demonstrate the feasibility of our attack on grey box ASVs.

Since a grey box ASV returns both the verification result and

the confidence score, the intuition of our grey box attack is

to estimate the gradient based on the difference of similarity

scores from multiple queries, and then dynamically update the

generated adversarial perturbations. Specifically, we utilize ze-

roth order optimization [25] to uplift the matching score while



maintaining the audio content unchanged simultaneously. A

visual illustration of our grey box attack is shown in Fig. 4.
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Fig. 4: An illustration of our grey box attack.

A. Attack Formulation

A grey box ASV system V is composed of two parts:

V (x, P, t) = Vp(x, P ) · Vi(x, t), where x is the audio to be

verified, P is the semantic content required by ASV and t
is the claimed identity (i.e., the victim’s identity in attack

scenario). Vp and Vi can be defined as

Vp(x, P ) =

{
1, if Trans(x) = P

0, otherwise

Vi(x, t) =

{
1, if f(x, t) ≥ TH

0, otherwise

f(x, t) = cos-sim(F (x), Et)

(1)

where Trans(x) and F (x) are the semantic content and em-

bedding extracted from x respectively, Et is the victim speaker

embedding, cos-sim(·, ·) calculates the cosine similarity, and

TH is the pre-defined threshold. Vp(x, P ) checks whether the

transcription of x matches pre-defined phrase P while Vi(x, t)
checks whether the voiceprint of x matches the target speaker

t. Then, once provided an audio clip x ∈ (−1, 1)n uttered

by the source speaker s, the adversary seeks a minimum

perturbation Δx, subjecting to the following constraints:

1) x is verified as an utterance from victim speaker t :

Vi(x, t) = 1, i.e. f(x, t) ≥ TH .

2) The semantic content of generated audio x+Δx remains

unchanged: Vp(x+Δx, P ) = 1 = Vp(x, P ).
3) The perturbation Δx is too subtle for human to notice.

We formulate the above problem as an optimization problem.

min h(x+Δx, t) + C · d(x, x+Δx)

s.t. Vi(x+Δx, t) = 1

Vp(x+Δx, P ) = 1

x+Δx ∈ (−1, 1)n
(2)

where d(x, x + Δx) measures the distance between x and

x+Δx, h(x+Δx, t) evaluates the impacts of our attack on

f(x, t), and C is the adjusting factor balancing between d(·, ·)
and h(·, ·). In this study, h(·) is defined as:

h(x+Δx, t) = max{log f(x, t)− log f(x+Δx, t),−τ} (3)

where τ > 0 is a constant to specify the upper bound of the

optimization, as the loss function in Eqn. 2 converges when

log f(x + Δx, t) − log f(x, t) > τ . For the distance metric

d(x, x+Δx), we choose L2 distance metric for d(·, ·).
Note that Vp(x + Δx, P ) = 1 is not included in our

objective function to improve the efficiency of our attack.

Instead, we check the audio transcription after obtaining the

optimal adversarial audio. This simplification is based on our

observation as mentioned in Sec. VI that audio perturbations

generated with a proper L2 constraint is unlikely to change

the audio content.

B. Zeroth Order Optimization (ZOO)

VMask utilizes zeroth order optimization [25] to solve the

above problem. Formally, we estimate the partial derivative
∂h(x,t)
∂xi

with the technique of symmetric difference quotient

through two queries : h(x+ εzi, t) and h(x− εzi, t)

̂∂h(x, t)

∂xi
=

{
h(x+ εzi, t)− h(x− εzi, t)

2ε

}
(4)

where ε is a small constant (e.g., ε = 0.0001 in this study),

and zi ∈ {0, 1}n is a unit vector with only zi[i] = 1.

With 2n queries to the victim ASV, we can compute the

partial derivatives for all n coordinates. Based on the estimated

gradient, we can perform various gradient based methods to

minimize h(x + Δx, t). However, 2n times queries for one

batch update is too expensive and unpractical for the adversary,

Therefore, a weighted stochastic coordinate gradient descent
method is leveraged to reduce the cost in each update.

In weighted stochastic coordinate gradient descent, only

some coordinates are updated in each step. Considering the

remarkable influence of coordinates selection strategy on the

optimization efficiency, we use a weighted sampling strategy

rather than a random strategy to select more important coordi-

nates. The weight vector is computed from STFT as follows.

Wi∈[1,n] =

{∑
k∈K STFT (� i

w1
�, k), i ≤ n− w0∑

k∈K STFT (T − 1, k), otherwise
(5)

where w0 and w1 denote the hop length and window length

of FFT sliding window, STFT (T,K) is the STFT of x.

Applying L2 normalization on W we obtain W ∗ as our

sampling weight vector.

C. Psychoacoustic Masking

In the above formulation, L2 distance is used as a regularizer

to restrain the adversarial perturbations. In this study, we intro-

duce psychoacoustic masking to improve this naive regulariza-

tion. Psychoacoustics studies the relationship between sound

and the hearing it caused [26]. By exploiting psychoacoustic



model, VMask can compute the hearing threshold which

indicates the masking threshold between different frequencies.

Then hearing threshold is leveraged to restrain the adversarial

perturbations under human perception threshold.

Specifically, we first derive a scaling factor [12] in each iter-

ation, which is then multiplied to the back propagated gradient

resulting the final gradient. The scaling factor functions like

a mask to repress the frequencies with sound level over the

threshold while allowing more perturbations on the frequencies

with sound level lower than the threshold. We rewrite the

gradient estimation with scaling matrix S(x) introduced as:

̂∂h(x, t)

∂xi
= lim

ε→�0

(
S(x) · Δh(x, t)

Δm(x)

)
· Δm(x)

2ε
(6)

where Δh(x, t) = h(x + εzi, t) − h(x − εzi, t), Δm(x) =
m(x+ εzi)−m(x− εzi), and m(x) is the power spectrogram

matrix computed locally. Note that in order to match the shape

of S(x), we write
Δh(x,t)

2ε into
Δh(x,t)
Δm(x)

Δm(x)
2ε . We follow [12]

to compute the scaling matrix as:

S(x) = Φ∗(x, x0) ·H∗(x0) (7)

where H∗(x0) is the normalized hearing threshold computed

for the original audio signal x0, and Φ∗(x, x0) is a normal-

ization of Φ(x, x0) computed as the following equation:

Φ(x, x0) = H(x0)−D(x, x0) + λ

= H(x0)− 20 log10
|m(x0)−m(x)|
max(|m(x0)|) + λ

(8)

where λ is a constant added to allowing the noises cross the

threshold slightly. We let λ = 10 in all of our experiments

conducted. The full attack algorithm is presented in Algorithm

1, where Adam denotes the Adam optimizer [27] with default

parameters, R is the number of steps and B is the batch size.

V. BLACK BOX ATTACK

Inspired by the recent success of adversarial attacks in

image recognition [28], [29], we leverage the transferability

of adversarial examples to attack black box ASV systems.

The basic idea of our black box attack is that despite the

difference of deep learning models used in ASV systems, they

all project the high dimensional audio space into a similar low

dimensional speaker space. As a result, by separately training

a local deep learning based ASV, we may be able to imitate the

victim black box system. The first step of our black box attack

is to extract the victim speaker embedding out of several victim

recordings with arbitrary content. Then starting from an audio

containing the required audio content uttered by an arbitrary

person, we carefully add noises to it under the guidance of

the victim speaker embedding. Finally, we are able to generate

attack audios containing both the required content and victim

voiceprint. The whole procedure is visualized in Fig. 5.

Algorithm 1 Weighted batch stochastic coordinate gradient

descent with Psychoacoustic masking

Input:
Source audio x0 ∈ (−1, 1)n;

Target speaker t;
Output:

The adversarial audio x;

1: x← x0;

2: W ∗ ← CalcSamplingWeight(x0);
3: H ← CalcThreshold(x0);
4: for i ← 1 to R do
5: Coordinates C ← {1, · · · ,m}.sample(W ∗, B);
6: D ← CalcSpecDiff(x, x0)
7: Φ = H −D + λ;

8: S ← Φ∗ ·H∗;

9: for j ← 1 to B do
10: Δhj ← f(x+ εzCj

, t)− f(x− εzCj
, t)

11: Δmj ← m(x+ εzCj
)−m(x− εzCj

)

12: ĝj ← S · Δhj

Δmj

Δmj

2ε ;

13: end for
14: Δx← Adam(ĝ);
15: x← x+Δx
16: end for
17: return x
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Similarity
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+

Adversarial
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Embedding
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Fig. 5: A visualization of our black box attack.

A. Obtaining Victim Speaker Representation

We train a ResNet-style [30] speaker embedding system

following Li et al. [20]. This CNN takes fixed-length audio as

input. Temporal averaging is applied to the flattened output of

the last Residual block to compute a utterance-level activation.

Besides, triplet loss, softmax pre-training and hard-negative

mining [20] are also exploited. With the trained speaker

embedding system, we can obtain a 512-dimensional victim

speaker model by averaging the embedding vectors extracted

from victim recordings with arbitrary content.

B. Attack Audio Generation

A successful attack audio should contain both the required

content and the victim voiceprint. To satisfy the first constraint,

we start the attack from an arbitrary speaker’s utterance for



the verification phrase. We assume that with only subtle noise

added, the content of the adversarial audio would change

discreetly. To satisfy the second constraint, we first extract the

victim embedding Et from a few recordings with arbitrary

content, and use Et as a guideline to generate some subtle

perturbations such that the embedding extracted from the

adversarial audio is similar to the victim embedding Et in

the sense of some distance measure. Our formulation of black

box attack is the same as Eqn. 2, except for a different h(·) :

h(x+Δx, t) = 1− cos-sim(F ′(x+Δx), Et), (9)

where F ′(x + Δx) denotes the embedding vector extracted

for the adversarial audio and cos-sim(·, ·) denotes the cosine

similarity between two vectors. Following [31], we use a L2

distance metric in our work, so d(x, x+Δx) = (Δx)2.

As common speech models take the acoustic feature as

input, previous attack generates attack audios by reversing

the modified MFCC features [14], which introduces a large

overhead and information loss. We implement our attack in

an end-to-end manner, allowing direct modifications on raw

audio signal. Specifically, we implement a differentiable mel-

spectrogram extraction layer in front of the former speaker

embedding system. A loss layer is added after the speaker

embedding extraction layer to calculate the distance between

the adversarial embedding and victim speaker embedding. This

end-to-end neural network allows us to apply backpropagation

to approximate the optimal adversarial perturbations.

C. Psychoacoustic Masking

Similar to what we do in Sec.IV, psychoacoustic model is

used to restrict adversarial perturbations under human hearing

threshold. Different from grey box attack, we do not have to

estimate the partial derivatives, as the local speaker embedding

system remains a white box to us. So according to the chain

rule, the gradient of the loss function with respect to the raw

input can be calculated according to following equation:

∂h(x, t)

∂xi
=

(
S(x) · ∂h(x, t)

∂m(x)

)
· ∂m(x)

∂xi
(10)

where m(x) denotes the output of feature extraction layer, and

S(x) is derived from Eqn. 7. λ remains as a value of 10. With

the masked gradient, we apply Adam [27] updating rule to

craft adversarial perturbations in each iteration.

VI. EVALUATION

In this section, we present the evaluation results of grey box

attack and black box attack.

A. Evaluation Setup

NVIDIA GeForce GTX 1070 GPU and Intel i7-8700K CPU

are used to generate the attack speech samples. To verify

whether the attack audios preserve the desired audio content,

we use Baidu speech recognition API [32] to transcribe the

audios. We utilize a free text-independent speech corpus Lib-

riSpeech [33] as our evaluation set. train-clean-100 contains

28539 utterances from 251 speakers and is used for pre-

training the local speaker embedding system for black box,

train-clean-360 contains 104014 utterances from 921 speakers

and is used for fine-tuning, dev-clean, with 2703 utterances

from 40 speakers, is used as the test set for local ASV system

and source audios for generating adversarial audios for towards

both grey box and black box ASVs.

(a) The matching scores of attack
trials before adversarial manipula-
tion.

(b) The matching scores of attack
trials after adversarial manipula-
tion.

Fig. 6: The columns represent the source speakers, the rows

represent the target speakers. A darker color indicates a higher

score.

B. Grey Box Attack

We evaluate our grey box attack against one of the state-

of-the-art speaker embeddings system, VGGVox3 which is

developed on Voxceleb2 [16], a large-scale real-world corpus.

The open sourced ASV system can achieves a best EER of

3.95% on Voxceleb2’s test set according to the author.

We implement the our ZOO based attack in python, Matlab

engine API4 is used to access the grey box matlab model.

For the parameter choice, C is set to 0.01, and τ is set to 2
to allow a substantial perturbation. Since VGGVox does not

provide a threshold, we determine a threshold of 0.45 based

on the evaluation results of VGGVox on dev-clean. As for

the STFT computation, we utilize a FFT window with length

0.25s and hop length 0.01s.

Our attack trials are constructed from a test set consisting

of 5 randomly selected speakers from dev-clean. For each

speaker, we craft adversarial perturbations towards other 4

speakers resulting in 20 attack trials. For each attack trial, 500

iterations are performed, and in each iteration, we randomly

select a batch of 352 coordinates out of 25840 audio sampling

points, updating these coordinate with an Adam optimizer of

default parameters having the learning rate set to a value of

0.01. A success is reported if the grey box returns an Accept.

Finally, a success rate of 95% is achieved for the 20 trials.

Fig. 6 visualizes the matching score before and after adver-

sarial perturbations in two confusion matrix. The value in each

block represents the confidence score of the corresponding

source speaker’s utterance verified as the corresponding target

3https://github.com/a-nagrani/VGGVox
4https://ww2.mathworks.cn/help/matlab/matlab external/install-the-matlab-

engine-for-python.html?lang=en



Fig. 7: The success rate and average SNR vary when we set

different target thresholds.

speaker. The case that the source speaker and target speaker are

the same person is not considered, thus all diagonal elements

are all set as 1 in Fig. 6b. By comparing Fig. 6a with

6b, we can see that the confidence scores are substantially

improved after subtle adversarial manipulation is applied, with

an average improvement of 306%. Meanwhile, the adversarial

perturbation is acceptable, as the average SNR is 13.13dB.

The transcription results are also checked to see whether the

contents are preserved in the adversarial audios. To evaluate to

what extent the contents are twisted, three metrics commonly

used in speech recognition are chosen, namely WER (Word

Error Rate), WRR (Word Recognition Rate), and SER (Sen-

tance Error Rate). Evaluating on the 20 trials we obtain WER

of 9.804%, WRR of 90.196% and SER of 31.250%, which

means around 70% of the adversarial audios have exactly the

same transcription as the original audios, and the probability of

a word in the adversarial audio having the same transcription

compared to the original audio is greater than 90%.

Moreover we evaluate the influence of λ on the perturbation.

We try different λ values, 0, 10, 20 and 40 in our experiments

and finally let λ = 10 in both grey box attack and black

box attack to obtain a earlier converge with a relatively larger

perturbation.

C. Black Box Attack

1) Speaker embedding system: VAD (Voice Activity Detec-

tion) is applied to eliminate the non-vocal signal for speech

samples. Each audio is then partitioned into fixed length audio

clips for which mel-spectrogram feature vectors of shape (160,

64) are extracted by leveraging a python package python
speech feature5.

For the softmax pre-training, we can reach an 83.12%

training accuracy after 10 epochs training with an Adam

optimizer of a 0.001 learning rate. Then with 6000 steps of

fine-tuning with triplet loss, we can achieve a verification

accuracy of around 99.2% and an EER (equal error rate) of

around 3.5% on the test set. In the following experiments,

5https://pypi.org/project/python speech features/
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Fig. 8: An Illustration of psychoacoustic model.

we utilize this speaker embedding system for speaker model

extraction.

2) Crafting adversarial examples for local ASV system:
We implement our attack on Tensorflow [34] platform, and

totally 400 attack trials are constructed. Each trial contains

two different speakers randomly sampled from dev-clean, one

as the source speaker and the other as the victim speaker.

Before launching the attack, each victim speaker’s embedding

is extracted from 5 randomly selected utterances. An Adam

optimizer with a 0.01 learning rate is applied to minimize

the loss. Observing an insignificant decrease of loss after 500

iterations, we limit the number of iterations to 500 in the

following experiments.

The threshold is varied to observe the performance of our

attack under different settings. As shown in Fig. 7, we can

achieve a 100% success rate when the target threshold is set

to 0.6∼0.75. Even for a high threshold 0.8, we can still achieve

a success rate of 87%. Meanwhile the average SNR decreases

as the pre-defined threshold increases, which indicates that

larger perturbation is needed to make the score cross a higher

threshold. However, the average SNR of attack audios is

always larger than 26dB, which means the perturbation is too

subtle to raise victim’s suspicion.

For a better understanding of adversarial perturbation and

psychoacousic masking, we visualize the power spectrogram

of one original audio and the corresponding adversarial audio

in Fig. 8a, while the difference of spectrogram and hearing

threshold are shown in Fig. 8b. We can see that the adver-



sarial perturbation is well-controlled and is below the human

perception threshold.

The comparison between the transcription of original audios

and adversarial audios is shown in Table I, In the worst case,

our attack is still able to achieve a WER of 20.757%, and a

SRR of 46.250%. We observe a sharp increase of WER and a

sharp drop of SRR when move the target threshold from 0.75

to 0.8. This may be attributed to the distance metric which

acts like a L2 regularizer in the iteration.

TABLE I: Audio transcription checking.

Threshold WER WRR SRR

0.6 10.359% 91.231% 74.5%

0.65 11.633% 88.980% 73.0%

0.7 13.026% 89.077% 72.0%

0.75 14.694% 87.143% 68.0%

0.8 20.757% 83.920% 46.250%

3) Transferring attack: Now we aim to show the effec-

tiveness of VMask towards a black box ASV systems, Mi-

crosoft Azure Speaker Verification API (MS-ASV) [17]. For

enrollment, the user has to choose one phrase from Table II,

and repeat it for three times. Then for verification, the user

has to utter the same phrase, with only the verification result

(Accept/Reject) and a confidence value (Normal/High/Very

High) returned.

We build up a real-world dataset containing utterances from

4 speakers. For each speaker, their speaker model is extracted

from 3 speech samples of arbitrary content. We also collect

3 speech samples for each of the 10 verification phrases for

each speaker, which are used as enrollments on MS-ASV and

also as the source audio in our attack.

For each phrase, we start with one speaker and craft

adversarial audios against the other 3 speakers. At the end,

we evaluate the crafted audios on the black box MS-ASV

API. Success is reported for each phrase if we can bypass

MS-ASV API at least once. As shown in Table II, our attack

reaches a 70% phrase-level success rate in fooling MS-ASV

API, which demonstrate the effectiveness of VMask in black-

box settings. It worth noticing that we can’t break 3 phrases.

We attribute the failure to two possible reasons: (1) MS-ASV

API may use a different model architecture (even an i-vector

based model). (2) the adversarial noise may be corrupted by

the preprocessing techniques of the API.

VII. CASE STUDY IN SMART HOME

A. System Setup

To demonstrate the practicability of VMask, we perform a

real-world case study of voice impersonation on Apple Home-

Kit [3], a popular smart home platform. In Apple HomeKit

environment, Siri serves as the voice interface and provides

the speaker verification function. As shown in Fig. 9, the

home appliance (Aqara smart LED bulb) is connected with

the Siri via an Aqara smart hub which is compatible with

HomeKit architecture allowing the user to turn on the bulb

TABLE II: Black box attack results against MS-ASV API.

No. Phrase content Results

1 I am going to make him an offer he cannot refuse �
2 Houston we have had a problem �
3 My voice is my passport verify me �
4 Apple juice tastes funny after toothpaste �
5 You can get in without your password �
6 You can activate security system now �
7 My voice is stronger than passwords ×
8 My password is not your business ×
9 My name is unknown to you ×
10 Be yourself everyone else is already taken �

Aqara smart 
LED bulb

Attack device:
Amazon Echo

Aqara smart hub:
Compatible with Homekit

Victim ASV:
Apple Siri

“Hey Siri, turn 
on the light”

Victim

Fig. 9: Case study testbed.

by saying “Hey Siri, turn on the light”. In this experiment,

we recruited 5 volunteers. First, the speaker model of each

volunteer is built from utterances containing arbitrary content.

Then in each round, one of volunteers is chosen as the victim.

With the victim enrolled to Siri, we ask the other 4 volunteers

to say “Hey Siri, turn on the light” for six times and use these

samples as source audios in black box attack. The adversarial

perturbations are added to the source audios as mentioned in

Sec. V. The loudspeaker (i.e., Amazon Echo) is used to play

the adversarial audio and the bulb will become illuminated if

the attack succeeds. We continued to select different victim

volunteers and conduct this experiment on different five types

of Apple devices (i.e., iPhone SE, iPhone 7 plus, iPhone 8,

iPhone X, iPad 6) to ensure the generality of VMask.

B. Experimental Results

The attack capability of VMask is first evaluated. Five Apple

devices are assigned to five volunteers one by one. Then, for

each volunteer holding the victim device, we play adversarial

audios from other volunteers as described in Sec. VII-A. For

each victim device, it suffers from attacks from VMask for

6×4 = 24 times, and the successful attack times are shown in

Fig. 10a. It is observed that the average successful attack rate

achieves 81/120 = 67.5%, meaning that all Siri in test devices

are vulnerable to our VMask. We notice that the success rates

among different Apple devices are quite different. Since Siri

is an online ASV system, the reason behind this phenomenon
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Fig. 10: Case study Results.

can be attributed to the difference of hardware condition and

device holder’s voice profile.

The high successful attack rates in Fig. 10a are caused by

the fact that Siri opts for a relatively low verification thresh-

old to guarantee user experience. Existing research shows

Siri’s capability of differentiating speakers is not ideal [35].

Therefore, to prove the effectiveness of adversarial audios, we

utilize another volunteer’s original and adversarial audios to

attack Siri for 12 times respectively and then conducted these

experiments among the 5 volunteer pairs on iPad 6 devices.

As shown in Fig. 10b, after adding adversarial examples to

original examples, the successful attack times (rates) raise

from 20 (33.3%) to 41 (68.3%), which demonstrates VMask’s

attack capability. It’s worth noticing that even for the 5th

user pair of whom the voice profiles are similar, by adding

adversarial noises, the attack success times (rate) also raised

from 8 (66.7%) to 10 (83.3%). This further demonstrates the

practicality of VMask in real-world smart home environment.

VIII. DISCUSSION

A. Countermeasures

To prevent ASV from VMask’s attack, an intuitive strategy

is training a detector to distinguish adversarial audios from

benign ones. However, a large amount of attack audios are

needed. Moreover, this strategy may raise ASV’s false alarm

which reduces the user experience. Another possible defense

mechanism may focus on destructing adversarial perturbations,

down-sampling and noise reduction methods may be utilized.

However, down-sampling and noise reduction may cause the

degradation of speech recognition since they remove the

legitimate user’s speech information. Liveness detection like

iris liveness detection can also be adapted as a defense method.

B. Limitations and Future Work

Although VMask achieves a good attack performance and

reveals security vulnerabilities of popular ASVs, there still

exists limitations in our study. The main limitation is the lack

of modeling noise in real-world attack environment, which

reduces the success rate of VMask. Building the noise model

is difficult, because it needs to consider multiple factors (e.g.,
circumstance, audio hardware) which are changed dramati-

cally. Besides, in current stage, the perturbation generation

speed in grey box attack (i.e., 3 seconds to do one batch

update) still needs to be improved. To address this issue,

designing a algorithm better than weighted stochastic gradient
descent is a feasible solution. In the current stage of our study,

VMasks performance various on different sentences. Since the

architecture and parameters of black-box ASVs are unknown

to attacker, this is still an open issue. We leave these issues to

future research.

IX. RELATED WORK

Traditional attacks aiming at voice interface. Traditional

voice interface attacks mainly focus on fooling automatic

speech recognition (ASR), while little effort has been pushed

to attack the ASVs. Carlini et al. [14] proposed a scheme to

attack a HMM based ASR system. In this attack, the generated

audios are heard as noises by human, but can be translated

to malicious commands by ASR. Zhang et al. [10] leverage

the hardware drawbacks of microphones to launch ultrasonic

based attack which is inaudible to human. However, these

attacks cannot manipulate victim’s voiceprint, and applying

them on ASV needs to pre-collected victim’s speech samples

which is unpractical in smart home environment.
Adversarial examples based attacks on voice inter-

face. The success of adversarial examples in fooling image

recognition models [36], [37] have inspired the researcher

to explore the feasibility of applying adversarial examples

on deep learning based ASR and ASV. Carlini et al. [31]

utilize subtle perturbations to fool Deep Speech. Yuan et al.
[11] propose a practical adversarial attacks against ASR by

injecting malicious perturbation into songs. Furthermore, psy-

choacoustic models are applied to optimize the perturbation for

attacks against DNN-based ASR system [12], [38]. However,

these target ASV systems in these attacks are designed towards

white-box and cannot be deployed in proprietary black-box
ASVs. Kreuk et al. [39] utilizes transferability of adversarial

examples to launch attack on a black-box ASV. However, this

attack needs to know the model’s basic architecture in advance

and cannot be deployed in the ASVs studied in this paper.

X. CONCLUSION

In this paper, we propose VMask, a novel and practical

voiceprint attack aiming at ASV in smart home. To mislead

ASV’s classification model, VMask enables arbitrary speech

samples to have victim’s voiceprint by adding carefully crafted

noises. VMask is practical because the added noises are too

subtle to raise the victim’s suspicion. We propose adversarial

audio generation algorithms for both grey box and black box

ASVs, and implement VMask on both VGGVox and Mi-

crosoft Azure platforms. Finally, we conduct attacks on Apple

HomeKit platform, and the experiment results demonstrate the

feasibility of VMask in real-world circumstances.
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