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Abstract—The latest FCC ruling has enforced database-driven
cognitive radio networks (CRNs), in which all secondary users
(SUs) can query a database to obtain Spectrum Availability
Information (SAI). Database-driven CRNs are regarded as a
promising approach for dynamic and highly efficient spectrum
management paradigm for large-scale Internet of the Things
(IoTs). However, as a typical location-based service (LBS), before
providing services to the user, there is no verification of the
queried location, which is very vulnerable to Location Spoofing
Attack. A malicious user can report a fake location to the
database and access the channels that may not be available
for its location. This will introduce serious interference to the
PUs. In this study, we identify a new kind of attack coined as
location cheating attack, which allows an attacker to spoof other
users to another location and make them query the database
with wrong location, or allows a malicious user to forge location
arbitrarily and query the database for services. To thwart this
attack, we propose a novel infrastructure-based approach that
relies on the existing WiFi or Cellular network Access Points
(or AP) to provide privacy-preserving location proof. With the
proposed solution, the database can verify the locations without
knowing the user’s accurate location. We perform comprehen-
sive experiments to evaluate the performance of the proposed
approach. Experimental results show that our approach, besides
providing location proofs effectively, can significantly improve
the user’s location privacy.

Index Terms—Location cheating attack, location proof verifi-
cation, database-driven CRNs.

I. INTRODUCTION

THE rapid advancement of the emerging wireless technol-
ogy and the ubiquitous computing applications has sig-

nificantly increased the demand for the communication media
resource, wireless spectrum. According to the conventional
static spectrum allocation paradigm, most of the spectrum
resources have been assigned to the existing primary users
(e.g. such as Military communications and broadcast TV). To
address the ever increasing demand for spectrum resources and
allow more and more Internet-of-things applications, cognitive
radio networks (CRNs) have been proposed to improve the
efficiency of spectrum utilization. In CRNs, primary users
(PUs) are licensed users who have exclusive privilege to access
the licensed channels that have been pre-assigned whenever
they need. Secondary users (SUs) are unlicensed users who
are only allowed to opportunistically access the channels when
the channels are not occupied by the PU.
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Database-driven CRNs are regarded as a promising ap-
proach to allow the dynamic spectrum sharing in many large-
scale IoT applications. In database-driven CRNs, all SUs can
query a database to obtain Spectrum Availability Information
(SAI). Instead of spectrum sensing, SUs are required to submit
a request containing its current location information to the
database. Until now, FCC has designed several entities (e.g.
Comsearch, Google Inc.) as TV band database administrator.
Though database-driven CRNs are considered as a promising
approach to improve the efficiency of spectrum utilization,
they face serious security challenges. Most of the existing
researches [11] [5] focus on the location privacy issue. But as
a variant of location-based service (LBS), we focus on another
security challenge that the user may cheat about its location
when querying the database for services. Since there is no
location verification for database-driven CRNs, the user can
report a fake location information to the database and access
the channels that are not available for its location, which can
cause serious interference to the PUs. For instance, the United
States has announced the spectrum sharing between federal
government including military and non-government systems
in 3.5GHz band, which is used by the U.S. Department of
Defense (DoD) for critical radar systems. Therefore, location
spoofing attack will lead to the unauthorized spectrum access
of SUs and thus introduce serious interferences to the PUs,
which are not acceptable for CRNs. Therefore, location veri-
fication in database-driven CRNs is highly desirable.

On the other hand, privacy issue is another important issue
in CRNs. As pointed out by the existing researches [11] [21]
[22], the attacker can geo-localize the SUs by tracking the
users’ spectrum query or spectrum utilization history. The
existing researches pointed out that, in an anonymized trace
data set, four spatiotemporal points are sufficient to uniquely
identify the individuals and little outside or social network
information is needed to re-identify a targeted individual
or even discover real identities of users. Further, loss of
location privacy can expose users to unwanted advertisement
and location-based spams/scams, cause social reputation or
economic damage, and make them victims of blackmail or
even physical violence.

In this study, we study the problem of location proof in
Database driven CRNs without leaking the users’ accurate lo-
cation information. A straightforward solution against location
spoofing attack is to enforce the users to provide location proof
while querying for services. A location proof is a piece of
electronic data that certifies someone’s presence at a certain
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location for some duration. There are several existing works
that study the location verification, which can be classified
into two categories.

In the infrastructure-independent approach [8] [12], a user
can obtain location claims from neighbors. Zhu et al. [8]
propose the APPLAUS system, in which co-located Bluetooth
enabled users mutually generate location proofs and report
them to a location proof server. However, using short-range
communication technology could limit the range of verifi-
cation. In particular, Zeng et al. [12] firstly propose three
solutions to detect and defend against GPS spoofing attack
in database-driven CRNs, especially introduce a distributed
peer location verification (PLV) scheme, which assumes that
a certain number of anchor nodes transmit a r-radius beacon
signal containing his position to surrounding SUs to provide
location verification. However, the maximum transmission
power may be the bottleneck of this scheme.

In the infrastructure-dependent approach [14] [19] [6], a set
of WiFi access points (APs) are assumed to be available to
produce location proof to the users. Luo et al. [14] propose that
a user can obtain location proofs for different precision of her
location and choose one to disclose to the server, depending
on her privacy situation. Anh Pham et al. [19] propose a secure
privacy-preserving system relies on existing WiFi AP networks
for reporting location-based activity summaries.

As WiFi APs become increasingly prevalent, using WiFi AP
for location proof will be fairly effective, especially in urban
areas. Different from the previous researches, we propose a
novel hybrid infrastructure-based approach that relies on the
existing WiFi AP networks or the cellular networks to provide
secure and privacy-preserving location proof. In the case of
presence of WiFi APs, the users can prove their locations under
the help of WiFi APs. However, in the case of unavailable
WiFi APs nearby, the users can turn to the cellular tower to
request location proof, since the latter can provide a much
larger coverage. To protect their location, we adopt the private
proximity testing technology to allow the users to query the
database for service without leaking their accurate location.
Further, we discuss how to achieve the tradeoff of the user
privacy and localization accuracy via various system settings.

The contributions of this paper are summarized as below:
• We identify a new kind of attack coined as location

cheating attack in database-driven CRNs, which allows
an attacker to mislead a user with a fake location and
make them query the database with fake locations, or
allows malicious user to claim a location arbitrarily and
query the database for service.

• We propose a novel infrastructure-based approach that re-
lies on the existing WiFi AP network or cellular network
to provide guarantees for location cheating prevention and
location privacy for the users. The users can choose the
location privacy level as he needs, and, enable the user to
prove his location without leaking his accurate location.
We also discuss how to find the user’s optimal choice to
maximize the location privacy while ensuring the service
quality.

• We perform the comprehensive experiments to evaluate
the performance of the proposed approach. Our experi-

mental results show that our approach, besides providing
location proofs effectively, can significantly improve the
user’s location privacy and also demonstrate the effec-
tiveness of the optimal strategy.

The rest of the paper is organized as follows. Section II gives
the background of the database-driven CRNs and identifies
two kinds of location cheating attacks. Section III introduces
the proposed system architecture. Section IV gives a detailed
work flow of the approach and analyses the security of the
system. Section V describe a precision optimization problem.
Section VI discusses the experimental evaluation. Section VII
concludes the paper.

II. BACKGROUND AND ATTACK MODEL

A. Overview of Database-Driven CRNs Service

The Database-driven CRNs are normally comprised of three
components: a set of primary users (PUs), s set of secondary
users (SUs), and the database. The Spectrum Availability In-
formation (SAI) is calculated and stored in the database based
on the knowledge of status of PUs and terrain parameters. In
order to obtain the SAI before starting to access the channels,
the SUs should query the database. The database query process
has three phases:

• Query Phase: An SU sends a query that contains his
current location obtained from his built-in GPS location
readings to the database for services. Note that, an SU can
query the database for SAI of multiple locations around,
i.e., in the vicinity of his current location.

• Response Phase: The database calculates the SAI that
contains available channels and corresponding maximum
transmission power (MTP) for the SU’s locations and
sends it back to the SU.

• Notify Phase: After receiving the SAI from the database,
the SU chooses an available channel from the SAI and
registers the chosen channel in database. Note that, the
notification message is optional. However, the notification
phase is important based on the fact that the database can
leverage the notification message to manage the system
more efficiently.

B. Location Cheating Attacks in Database-driven CRN

As mentioned above, an SU receives the SAI from the
database by sending a query containing its current location.
Since this happens completely on the SU side, it is relatively
easy to launch the attack. In what follows, we define the attack
in two cases as summarized below and present more details
about the possible damage.

1) Active Location Cheating Attack: A malicious SU can
simply launch an active location cheating attack by reporting
a fake location to the database accordance with his own wish.
His goal is to obtain the SAI for the reported fake location to
gain more advantages.

From the system implementation point of view, there are
several ways for a malicious SU to forge a location and make
the device believe that it is really in the fake location [18].
In [10], a LocationFaker is developed as a system device to
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conduct a fake location arbitrarily which can be accepted as a
real location by Android device. Figure 1 shows the concept of
such location cheating. Thus, a malicious SU can implement
this kind of component to forge a location as they wish, and
then report it to the database to obtain the SAI for the fake
location.

Fig. 1. Illustration of active location cheating. Location Faker generates
location B and makes the device believe it is really in location B.

In database-driven CRNs, a mobile SU prefers to choosing a
channel with better quality and stable available time to achieve
larger communication throughput [20] when it is moving.
According to FCC ruling, the system allows an SU to load SAI
for multiple locations around, i.e., in the vicinity of its current
location and use such information to obtain one or multiple
available channels within that area [2]. If the location is a
little far away from his current location and also on its moving
route, malicious SU can obviously launch an active location
cheating attack to occupy the channels with better quality in
advance and gain more benefits. For example, he obtains the
SAI for location B while actually is located at location A (see
Figure 1). Then, he chooses a channel with better quality and
sends a notification message to the database, thus making the
database believe that he is accessing this channel while he
is actually not. If the attacker chooses several channels, this
introduces Denial of service (DoS) to other SUs in location
B, and also causes loss of the quality of service.

2) Passive Location Cheating Attack: The attacker is
another malicious attacker that is located in the same cell with
the victim who is launching a query towards the database for
SAI. The attacker’s goal is to mislead the victim that he is
located in a wrong location and obtain the wrong SAI, which
will introduce the interference to the PU.

As pointed out in [12], an attacker can use GPS spoofing
device (like a GPS signal simulator) to generate and broadcast
fake GPS signals synchronized with the real GPS signals
to the target receiver. Then, the fake GPS signals gradually
overpower the real GPS signals and replace it. Finally, the
target receive locks on the fake GPS signals. After replacing
the real GPS, the attacker can fool the target receivers to an
arbitrary location. If all victims receive the fake signals from
the same attacker, they are all spoofed to the same location L

′

as shown in Figure 2. Thus, a malicious SU can launch such
an attack to spoof SUs that are located in the same cell and
make them query the database for services by reporting the
spoofed location.

Then, the attacker can occupy the available channel with
better quality for location L as his exclusive channel to
achieve better transmission throughput. The SUs who query
the database for services with spoofed location L

′
may also

cause interference to the primary users (PUs), since they access
the channels that may not be available for location L.

Fig. 2. Illustration of passive location cheating. All victims in location L that
query the database for services are spoofed to location L’.

III. SYSTEM ARCHITECTURE

To prevent SUs from cheating their reported locations, we
propose a novel infrastructure-based approach which is based
on an infrastructure of WiFi APs or cellular towers to provide
secure and privacy location proofs, such that the database
can verify the reported location before providing spectrum
services. In this section, we describe the different entities
involved in our system: SUs, a WiFi AP network operator or a
cellular network, and the database that contains SAI provider
database, location proof server, and certificate authority (CA).
Figure 3 depicts the overview of the system we consider.

A. The Users

We assume that some users are going to obtain the Spectrum
Availability Information (SAI) from the database when they
are moving. According to the latest ITEF paws-protocol, a user
is allowed to query the database for the SAI by submitting a
region that contains his location [1]. To protect the location
privacy, we assume that the location submitted to the database
by the users specifies a region. These users are equipped with
GPS-, WiFi-, and Cellular-enabled devices, and are capable of
connecting to the Internet through WiFi or Cellular networks
[16]. We also assume a unit-disc model for WiFi APs and
cellular towers, that means a user can communicate with a
WiFi AP or a cellular tower only if the distance between them
is lower than a given radius R, which is equal for all users,
WiFi APs and cellular towers. Before querying the database
for services, the user should obtain the location proof from a
WiFi AP or a cellular tower firstly.

To protect the user’s privacy, the users will register to the
Certification Authority (CA) with some randomly generated
pseudonyms and they can use such pseudonyms to protect their
privacy while gaining location proof. A pseudonym contains a
public/private key pair (Kpri, Kpub), generated with a public-
key encryption scheme. The public key Kpub serves as the
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pseudonym of the user, while the private key Kpri enables the
user to digitally sign the message. We assume that users do not
give their pseudonyms to other users, and the pseudonyms also
should not be easily spoofed and cloned. While registering, we
also assume that the CA can generate some other public/private
key pairs (PKpri, PKpub), in which PKpub is given to the
user and PKpri is kept by the CA.

Fig. 3. Overview of the system. First, the user obtains location proof from
the nearby WiFi AP or cellular tower, then submits it to the location proof
server. Second, CA verifies whether the location proof is legitimate. Only if
the verification is pass, then SAI provider database provides the SAI to the
user.

B. WiFi AP network and Cellular network

We assume that there are one or multiple WiFi AP networks
or cellular networks and each network contains a set of fixed
WiFi APs or cellular towers deployed in the area. Each WiFi
AP or cellular tower knows its geographic position and its
transmission range and can embed its location information
into the location proof. All WiFi APs or cellular towers have
synchronized clocks within a few hundreds of milliseconds
(this can be achieved by using the NTP [3]). Each WiFi AP
or cellular tower from the same network shares a public-key
group key pairs (GKpub, GKpri), in which GKpub is known
to the users and the database, whereas GKpri is only known
to the WiFi APs or the cellular towers.

We assume that the WiFi AP network and cellular network
are honest but curious, which means that they will obey the
rules that we proposed and also may be interest in tracking the
users’ locations based on the collected information. We also
assume that the WiFi AP network and cellular network do not
collude with the database.

C. Database

To prevent users from cheating about their location, we need
to add the location verification functionality in the database’s
side, thus in our system we make a little change to the
database and divide it into three parts: Location Proof Server,
Certification Authority (CA) and SAI Provider Database.

1) Location Proof Server: Location proof Server directly
communicate with the users who submit their location proofs.
The goal of the Location proof Server is to collect location
proofs. As the identities of the location proofs are stored

as pseudonyms, even though the Location proof Server is
compromised by the attacker, it is impossible for the attacker
to know the real identity of the location proof.

2) CA: As commonly assumed in many networks, we con-
sider an online CA run by a trusted party. CA is the only party
who knows the mapping between real identity and pseudonym.
CA also knows the secret key PKpri corresponding to the
user, since the location proof is encrypted with PKpub, thus
it can use PKpri to verify the location proof. We assume the
CA is trusted and does not collude with the WiFi AP network.

3) SAI Provider Database: The SAI Provider Database
is more similar to the traditional database described in the
previous database-driven CRNs system. After the verification
of location proof is pass, the Location Proof Server will submit
the region in spectrum request to the SAI Provider Database.
Then, the SAI Provider Database will calculate the SAI for
the region and send it back to the user.

IV. THE PROPOSED PRIVACY PRESERVING LOCATION
VERIFICATION SCHEME

In this section, we present our approach for privacy-
preserving location verification (PPLV) scheme. First, we give
an overview of the proposed approach and define the main
processes it involves. Subsequently, we present the detailed
work flow. Finally, we analysis the security and privacy. Figure
3 shows an overview of the approach and main processes
involved.

A. Overview of PPLV

As WiFi APs become increasingly prevalent and can provide
more accurate location proof, in our scheme, the users prefer
to requesting location proof with WiFi AP; while there are no
WiFi APs nearby, then the users choose the nearby cellular
tower to request for location proof. To protect the location
privacy, we adopt a grid reference system with different levels
to represent locations, and users can choose appropriate level
to qwuery for location proof.

In the case of cellular tower, since the cellular tower can
provide a larger coverage, the user does not need to specify
the region. He specifies a granularity of level to protect his
location privacy, and requests location proof with the cellular
tower. Then the cellular tower embeds its coverage to the
location proof and sends back to the user. Then the user can
query the database for services by submitting the location
proof containing the cellular tower’s coverage. Finally, the
database calculates the SAI for the coverage and sends back
to the user.

In the case of WiFi AP, since the WiFi AP’s coverage is
much smaller than the cell size, the user not only specifies the
granularity of level, but also specifies the region. To further
protect the location privacy (i.e. enable the user to prove his
location without leaking the accurate cell to the database),
we adopt private equality testing [4] to determine if two cells
match without revealing the exact cell number. The basic idea
is that if the user is located at cell a and WiFi AP is located
at cell b, CA learns if a = b and nothing else. We will give a
detailed work flow in section IV-C.
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B. System Initialization

1) Global setup: The location of a user can be defined
with different granularities. The user may want to define their
location in appropriate granularity under different situations.
For example, the user may be willing to use fine-grained
location information in urban area while using coarse-gained
location information in countryside. As show in Figure 4(a),
the system adopts a grid reference [9] to represent locations,
where grid indices represent areas covered by grid cells. All
users, all WiFi APs, all cellular towers and the SAI provider
Database share a list of coordinate-axis aligned grid system
denoted by Γ(l)(l = 0, 1, 2, · · · ) of different levels. For each
level l, the grid cell size, i.e. width and height, is fixed and
equal. The grid cell size at level 0 is equal to 250m, and the
size at level l − 1 is always lower than that at level l. Every
grid cell c ∈ Γ(l) is identifiable by an index id(c) ∈ N and is
fully contained by several grid cells c ∈ Γ(l − 1).

(a) Grid system (b) WiFi AP (c) Cellular Tower

Fig. 4. Grid reference system. We assume the grid cell with side length of
250 meters for level 0, the unit-disc communication model with a radius of
25 meters for WiFi APs and of 2 kilometers for cellular towers.

2) User setup: Let G be a cyclic group of prime order p
and g a generator of G. We assume that the Diffie-Hellman
problem is hard in G. All users, WiFi APs, and the CA in the
system are pre-configured with the same G and g. We will
use Zp to denote the set {0, · · · , p− 1}. When the user firstly
registers to the CA, the CA generates several public/private
key pairs (e.g. CA chooses a random x in Zp and computes
h = gx), in which h given to the user served as PKpub, and
x is kept by the CA served as PKpri. Thus, the user has h,
and h will be used as his ElGamal public key. We assume that
the WiFi APs has the user’s public key h. And also the user
can obtain different pseudonyms (provided by the CA) while
registering.

C. System Process

1) Location Proof Request: The user periodically uses its
WiFi module to scan the channels, hearing beacons from the
nearby WiFi APs. A user does not have to transmit any data to
receive a beacon. He merely needs to listen, thus he can choose
a beacon with stronger power to request location proof. Upon
receiving a beacon, the user extracts the beacon’s sequence
number to use it in the request for location proof. Sending
back to the WiFi AP guarantees the freshness of the request. To
protect its location privacy, the user can choose the appropriate
granularity (the level of the grid system) suitable for him.
Thus, the location proof request can be denoted as:

Request = (Puser, n, l, t, Ruser, Clocuser) (1)

Here, Puser denotes the user’s pseudonym; n denotes the
beacon’s sequence number or preamble’s random number; l
denotes the granularity of level. t denotes the request time.
Ruser is a set of cell ids that denote the region that the user
queries for. Clocuser encrypted with the public key PKpub

contains the user’s location information, which can be denoted
as

Clocuser
= (gr, ha+r) (2)

Here, r is a random number in Zp, a is the user’s grid cell id
under the level of the grid system l.

Assume that a user and a WiFi AP use granularity of level 1
in Figure 4(b). The user specifies the region Ruser, containing
grid cells {a0, a2}, in which grid cell a2 is the user’s cell, then
he computes an encryption of his location a2 encoded as ha2

and sends the ciphertext to the WiFi AP. In particular, the user
computes

Clocuser = (gr, ha2+r) (3)

and embeds it into the request.
2) Location Proof Issue: Upon receiving the location proof

request from the user, the WiFi AP firstly checks whether
the number is a current one. We assume that the WiFi AP
can accept requests whose sequence number were broadcasted
within last 100 milliseconds. Since 802.11 sequence numbers
repeat after 4096 frames, the 100ms time interval is small
enough to prevent security attacks [15]. Then, the WiFi AP
should verify that the region Ruser is reasonable (i.e. since
the user’s cell must be in coverage area of the WiFi AP
RAP , Ruser should have intersection with RAP [17]). If the
intersection is denoted as {b1, · · · }, then the WiFi AP uses
the element of {b1, · · · } and the ciphertext Clocuser = (g1, g2)
from the user to construct a new encryption message, which
can be denoted as

ClocAP = (gs1g
t, gs2h

(t−s·b1), · · · ) (4)

Here, s is a random none-zero number in Zp, t is a random
number in Zp. Note that setting w = s · r + t, we get

ClocAP
= (u0, u1, · · · ) = (gw, hs·(a−b1)+w, · · · ) (5)

As show in Figure 4(b), the WiFi AP finds the coverage area
{a0, a1, a2, a3}, and compares with Ruser. The intersection
grid cells are {a0, a2}. Then, the WiFi AP computes

ClocAP
= (u0, u1, u2) = (gw, hs·(a2−a0)+w, hs·(a2−a2)+w)

(6)
Then, the WiFi AP embeds its location information into

the location proof response that is signed with private group
key GKpri, and sends back to the user. The location proof
response can be denoted as

Response = sigGKpri(Puser, l, t, Ruser, ClocAP ) (7)

3) Location Proof Verify: To submit a location proof, a
user must sign it before transmission. Upon receiving the
location proof, the Location Proof Server performs four steps.
First it checks the user’s signature to make sure that the
location proof has not been tampered with while submitting.
Second, it checks the WiFi AP’s signature that is embedded in
the location proof. This step makes sure that the location proof
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Fig. 5. location proof verification with WiFi AP.

has not been modified by the user. Third, it checks that the user
is indeed the recipient of the location proof. Fourth, if these
three steps are successful, it forwards the Puser and ClocAP

to the CA for verification. CA searches the corresponding
secret key PKpri for Puser, and decrypts ClocAP , or computes
{m1 ← u1/u

x
0 ,m2 ← u2/u

x
0 , · · · }. If one of elements is equal

to 1, the location proof is considered as legitimate, then the
Location Proof Server submits Ruser and l to the SAI Provider
Database. Otherwise, it is rejected.

4) SAI Retrieval: When SAI Provider Database receives l
from Location Proof Server, it applies the granularity of level
l and calculates the SAI for grid cells in Ruser based on the
granularity of level l (e.g. in Figure 4(b), it will calculate the
SAI for grid cell {a0, a2}). Note that, a channel in the SAI for
grid cell a2 means that the channel is available for all subcells
in cell a2, thus when a user specifies a higher granularity of
level, the database may respond with the SAI contains less
available channels.

D. Security and Privacy Analysis

1) Malicious User: First, we prevent users from forging
the location proofs by using the digital signature GKpri.
Moreover, the users can only obtain the valid location proof if
they are in transmission range with the WiFi APs or cellular
towers. Second, a fake region Ruser can be verified by the
WiFi AP. Third, a fake location a can be verified by the
CA based on our location proof verification scheme. Thus,
a malicious user can be detected immediately when he is
cheating about his location.

2) Curious Database: In our scheme, the Location Proof
Server can only access to location proofs and pseudonyms of
the users. It can not know the real identities of the location
proofs. Moreover, the location proof verification do not reveal
the user’s accurate location. By using Spectrum Utilization
based Location Inferring attack [11], the user can be geo-
located to an accurate estimated location. However in our
scheme, we can also use different granularity level to protect
the user’s location privacy.

3) Curious WiFi AP Network: Several WiFi APs could
collude and track the location of a user based on the collected
location proof requests. To address this issue, our scheme
employs randomized pseudonyms as well as randomized en-
cryption keys. Since WiFi APs only know pseudonym Puser

and encryption key PKpub, and the user uses a group key
containing a pseudonym and a public key PKpub each time

while requesting location proof, it could not link different
location proof requests to a same user, thus it can not track
the user’s trajectory.

V. OPTIMAL LOCATION PROOF REQUEST

As mentioned in IV-C4, a higher granularity of level in-
troduces a less number of available channels. A user may
want to specify a higher granularity of level while he can
tolerate the service quality loss. We describe this as a precision
optimization problem that formalizes the objectives of the user.
In this section, we first define the metrics of service quality
and location privacy, and then conduct the simulations to find
the user’s optimal choice.

A. Service Quality Metric
Intuitively, the service quality can be represented by channel

quality. As mentioned in II-A, the SAI produced by SAI
Provide Database contains the available channels and the
corresponding allowed MTP. We assume that the SAI can
be denoted as {(CH1,MTP1), (CH2,MTP2), · · · }, in which
CHi denotes the i-th available channel, and MTPi denotes
the corresponding allowed MTP level. Each channel has five
different MTP levels, denoted as level 1 to 5, and level 5
denotes the maximum transmission power, which means the
user is out of the area that CHi covers or the PU is off. Each
level has a different weight wi denoting the quality of the
channel. Thus, the service quality Qa for grid cell a can be
denoted as

Qa =
∑

i∈SAI

MTPi · wi (8)

Thus, when a user located at location a queries the database
with region R, the service quality loss Qloss between location
a and region R can be denoted as

Qloss(a,R) =Qa−QR

=
∑

i∈SAIa

MTPi ·wi−
∑

i∈SAIR

MTPi·wi (9)

We assume that users impose a maximum tolerable service
quality loss, Qmax

loss , caused by reporting region instead of their
actual locations. Formally,

Qloss ≤ Qmax
loss (10)

This constraints the specified granularity of level l, which
must not result in lower quality for users, thus the maximum
tolerable service loss Qmax

loss can be used as a threshold when
a user queries the databases for services.



2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2481926, IEEE Internet of Things Journal

7

B. Location Privacy Metric

The attacker’s goal is to infer user’s actual location a given
the reported region R. As mentioned in IV-D2, by using
spectrum utilization based Location attack, the user can be
geo-located to an accurate location. We assume that the user
can be located to a grid cell under granularity of level l, and
we describe the attack result as a probability density function
Pr(a′|R). We follow the definition in [13] and quantify the
user’s location privacy as expected error distance in the attack.
Thus, the user’s location privacy can be denoted as

Pri(a,R) =
∑
a′∈R

ψ(l)Pr(a′|R)d(a, a′) (11)

Here, ψ(l) is a linear function about l, denotes the user’s
diverse profile, and the higher level l specifies, the better
location privacy achieves, a and a′ are the actual location
and the estimated location respectively, d(a, a′) denotes the
Euclidean distance between them.

We assume that users consider a minimum location privacy
level Primin when querying for services.

C. Optimal Strategy for the User

The user sets a minimum accepted threshold of location
privacy Primin and a maximum accepted threshold of ser-
vice quality loss Qmax

loss , then do the following maximization
program to choose an optimal granularity of level l to obtain
maximum privacy while ensuring the service quality:

Maximize
∑
a′∈R

ψ(l)Pr(a′|R)d(a, a′) (12)

suject to
Qloss(a,R) ≤ Qmax

loss (13)∑
a′∈R

ψ(l)Pr(a′|R)d(a, a′) ≥ Primin (14)

Pr(a′|R) = 1, ∀a′ ∈ R (15)

VI. EVALUATION

In this section, we evaluate the effectiveness and efficiency
of the proposed infrastructure-based approach from following
aspects: 1) cost of involved three entities; 2) effectiveness of
the proposed approach; 3) tradeoff between location privacy
and service quality.

A. Cost of Involved Entities

We conduct experiments on both of mobile device and
computer. The implementation platform includes a 64-bit
computer with Intel i5 CPU of 2.5GHz and 4G memory and
an android smart phone with Exynos 4412 1.6GHz CPU and
2G RAM, 16G ROM. We evaluate the cost at user side on
smart phone, and evaluate the cost at WiFi AP and CA side
on computer. In the experiment, we evaluate the efficiency
of three involved entities under different sizes of prime p as
shown in table I.

Fig. 6. Location proof obtain ratio under different density of WiFi AP.

Fig. 7. The coverage of WAGA-DT located at 33.941997◦, 84.410411◦ with
a TV tower, whose channel is ch27 and ERP is 1000kW .

1) Cost of Location Proof Request on User Side: The first
metric is the cost of location proof request, which is generated
at the user side. We evaluate the cost of location proof request
by evaluating the computation latency. Since the user needs
to perform two exponentiations when generating location
proof request, it is observed that the computation latency is
approximate to a constant value. Note that, this process could
be sped up considerably by using pre-computations, which
could further reduce the computation latency of location proof
request.

2) Cost of Location Proof Issue on WiFi AP Side:
The second metric is the cost of location proof issue, which
is generated at WiFi AP side. The cost of location proof
issue depends on the number of the intersection grid cells.
Since computing a product of exponents such as gs1g

t is only
slightly expensive than computing a single exponent, we count
these as a single exponentiation. The best case is to compute
two exponentiations while the worst case is to compute five
exponentiations.

3) Cost of Location Proof Verification on CA Side: The
last metric is the cost of location proof verification, which
is performed at the CA side. The cost of location proof
verification is to compute {u1/ux0 , · · · }. Since computing
division is much faster than computing exponentiation, the cost
of location proof verification for each user is to compute an
exponentiation.
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bit number of p location proof request cost(user) location proof issue cost(WiFi AP) location proof verification cost(CA)
128 48 ∼ 52ms 20 ∼ 60ms 10 ∼ 12ms
256 85 ∼ 90ms 42 ∼ 150ms 21 ∼ 30ms
512 185 ∼ 190ms 82 ∼ 250ms 41 ∼ 50ms

TABLE I
EVALUATION OF THE COST OF INVOLVED THREE ENTITIES ON SMART PHONE WITH EXYNOS 4412 1.6GHZ CPU AND COMPUTER WITH INTEL I5 CPU

OF 2.5GHZ

(a) number of available channels (b) service quality vs location privacy (c) optimal strategy under various service quality loss

Fig. 8. tradeoff between location privacy and service quality.

B. Effectiveness of the Proposed Approach

We evaluate the effectiveness of the proposed approach by
setting up an simulation environment with several WiFi APs
uniformly distributed in a region of 10km × 10km which
is divided into 100 × 100 cells. We use the Levy walk
mobility model to generate trajectory for mobile user. For
each simulation, we generate a Levy trace for the user, and
assume the user should update a location proof with certain
time interval. A successful location proof obtained when the
user is within the transmission range of a WiFi AP.

Figure 6 shows the location proof obtain ratio under dif-
ferent granularity of level with different densities of WiFi AP.
We can see that the location proof obtaining ratio reaches 90%
when the density of WiFi is 200/km2. The higher granularity
of level the user specifies, the more location proof obtains.

C. Tradeoff between Location Privacy and Service Quality

We conduct the experiment by using the the SAI of Atlanta
in white space database release on TVFool [7]. In Atlanta
area, there are 48 channels totally, one of which is shown in
Figure 7. Then we choose 5 regions of 50km × 50km, and
each region is divided into 100×100 cells. We assume 10000
users uniformly distributed in 10000 cells for each region. We
randomly choose 100 users in different cells and perform two
kinds of experiments.

As mentioned in IV-C4, a higher granularity of level in-
troduces a less number of available channels. In the first
experiment, for each channel (see Figure 7), we clarify the
cells into two kinds. The cells in the chromatic coverage
represent “0”, which means the channel is not available while
the rest cells represent “1”, which means the channel is
available. Then we randomly choose 100 users from the above
5 regions and calculate the SAI for them. Figure 8(a) shows the
results. We measure the average number of available channels
in SAI under granularity of level 1, 2 and 3 for 100 users. It
is observed that the number of available channels between
two levels can be different from 2 ∼ 5, and the average

number of available channels has an obvious reduction with
the increasing of level for all 5 data sets, which is right on
target with our expectations.

In the second experiment, for each channel, we clarify the
cells into six kinds according to their different colors. “0”
represents the cell which is not allowed to use the channel. “1
∼ 5” represent the different allowed MTP levels for different
cells, from weak to strong, and we assign different weights to
different levels. Then, we calculate the average service quality
for 100 users in 4 data sets according to the Equation 8.
Figure 8(b) show the results. Unsurprisingly, increasing the
granularity of level also degrades the service quality, which is
in line with the first experimental results.

We then demonstrate the efficiency of the optimal strategy,
comparing with random selections. Figure 8(c) illustrates the
maximum location privacy achieved given various service
quality loss. We randomly choose serval samples of users,
and compare the location privacy with random strategy and
optimal strategy. It is obvious that the better location privacy
can be achieved with optimal strategy. The experimental result
shows that our optimal strategy can significantly improve the
user’s location privacy with a given service quality loss.

VII. CONCLUSION

In this paper, we identify a new kind of attack coined as
location cheating attack in database-driven CRNs, in which
users can cheat their locations to gain more advantages, and
this can cause interference to PUs. To thwart this attack, we
propose a novel infrastructure-based approach that relies on
the existing WiFi AP network or cellular network to provide
secure and privacy location proof. On the one hand, we
use a grid reference system with different granularities to
represent locations, on the other hand, we adopt the private
proximity testing technology to further improve the user’s
location privacy. We conduct the program to find the optimal
strategy to maximum the user’s location privacy. Simulations
well demonstrate the effectiveness and efficiency of the pro-
posed approach. Experiments by using the SAI of Atlanta in
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white space database release on TVFool show the tradeoff
between location privacy and service quality and demonstrate
the effectiveness of the optimal strategy. Our future work
includes other security issues in database-driven CRNs.
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